
RFC 8677
Name-Based Service Function Forwarder (nSFF)
Component within a Service Function Chaining (SFC)
Framework

Abstract
Adoption of cloud and fog technology allows operators to deploy a single "Service Function" (SF)
to multiple "execution locations". The decision to steer traffic to a specific location may change
frequently based on load, proximity, etc. Under the current Service Function Chaining (SFC)
framework, steering traffic dynamically to the different execution endpoints requires a specific
"rechaining", i.e., a change in the service function path reflecting the different IP endpoints to be
used for the new execution points. This procedure may be complex and take time. In order to
simplify rechaining and reduce the time to complete the procedure, we discuss separating the
logical Service Function Path (SFP) from the specific execution endpoints. This can be done by
identifying the SFs using a name rather than a routable IP endpoint (or Layer 2 address). This
document describes the necessary extensions, additional functions, and protocol details in the
Service Function Forwarder (SFF) to handle name-based relationships.

This document presents InterDigital's approach to name-based SFC. It does not represent IETF
consensus and is presented here so that the SFC community may benefit from considering this
mechanism and the possibility of its use in the edge data centers.

Stream: Independent Submission
RFC: 8677
Category: Informational
Published: November 2019
ISSN: 2070-1721
Authors:

 D. Trossen
InterDigital Europe, Ltd

D. Purkayastha
InterDigital Communications, LLC

A. Rahman
InterDigital Communications, LLC

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Trossen, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8677

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8677

Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 2

https://www.rfc-editor.org/info/rfc8677

Table of Contents
1. Introduction

2. Terminology

3. Example Use Case: 5G Control-Plane Services

4. Background

4.1. Relevant Part of SFC Architecture

4.2. Challenges with Current Framework

5. Name-Based Operation in SFF

5.1. General Idea

5.2. Name-Based Service Function Path (nSFP)

5.3. Name-Based Network Locator Map (nNLM)

5.4. Name-Based Service Function Forwarder (nSFF)

5.5. High-Level Architecture

5.6. Operational Steps

6. nSFF Forwarding Operations

6.1. nSFF Protocol Layers

6.2. nSFF Operations

6.2.1. Forwarding between nSFFs and nSFF-NRs

6.2.2. SF Registration

6.2.3. Local SF Forwarding

6.2.4. Handling of HTTP Responses

6.2.5. Remote SF Forwarding

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 3

Acknowledgements

Authors' Addresses

1. Introduction
The requirements on today's networks are very diverse, enabling multiple use cases such as the
Internet of Things (IoT), Content Distribution, Gaming, and Network functions such as Cloud
Radio Access Network (RAN) and 5G control planes based on a Service-Based Architecture (SBA).
These services are deployed, provisioned, and managed using Cloud-based techniques as seen in
the IT world. Virtualization of compute and storage resources is at the heart of providing (often
web) services to end users with the ability to quickly provision virtualized service endpoints
through, e.g., container-based techniques. This creates the ability to dynamically compose new
services from existing services. It also allows an operator to move a service instance in response
to user mobility or to change resource availability. When moving from a purely "distant cloud"
model to one of localized micro data centers with regional, metro, or even street level, often
called "edge" data centers, such virtualized service instances can be instantiated in topologically
different locations with the overall "distant" data center now being transformed into a network
of distributed ones. The reaction of content providers, like Facebook, Google, NetFlix, and others,
is not just to rely on deploying content servers at the ingress of the customer network. Instead,
the trend is towards deploying multiple Point of Presences (POPs) within the customer network,
those POPs being connected through proprietary mechanisms to push content.

The Service Function Chaining (SFC) framework allows network operators as well as
service providers to compose new services by chaining individual "service functions". Such
chains are expressed through explicit relationships of functional components (the SFs) realized
through their direct Layer 2 (e.g., Media Access Control (MAC) address) or Layer 3 (e.g., IP
address) relationship as defined through next-hop information that is being defined by the
network operator. See Section 4 for more background on SFC.

In a dynamic service environment of distributed data centers such as the one outlined above,
with the ability to create and recreate service endpoints frequently, the SFC framework requires
reconfiguring the existing chain through information based on the new relationships, causing
overhead in a number of components, specifically the orchestrator that initiates the initial SFC
and any possible reconfiguration.

This document describes how such changes can be handled without involving the initiation of
new and reconfigured SFCs. This is accomplished by lifting the chaining relationship from Layer
2 and Layer 3 information to that of SF "names", which can, for instance, be expressed as URIs. In
order to transparently support such named relationships, we propose to embed the necessary
functionality directly into the Service Function Forwarder (SFF) as described in . With
that, the SFF described in this document allows for keeping an existing SFC intact, as described

[Schlinker2017]

[RFC7665]

[RFC7665]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 4

by its Service Function Path (SFP), while enabling the selection of appropriate service function
endpoint(s) during the traversal of packets through the SFC. This document is an Independent
Submission to the RFC Editor. It is not an output of the IETF SFC WG.

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Example Use Case: 5G Control-Plane Services
We exemplify the need for chaining SFs at the level of a service name through a use case
stemming from the current 3GPP Release 16 work on Service Based Architecture (SBA)

, . In this work, mobile network control planes
are proposed to be realized by replacing the traditional network function interfaces with a fully
service-based one. HTTP was chosen as the application-layer protocol for exchanging suitable
service requests . With this in mind, the exchange between, for example, the
3GPP-defined (Rel. 15) Session Management Function (SMF) and the Access and Mobility
Management Function (AMF) in a 5G control plane is being described as a set of web-service-like
requests that are, in turn, embedded into HTTP requests. Hence, interactions in a 5G control
plane can be modeled based on SFCs where the relationship is between the specific (IP-based) SF
endpoints that implement the necessary service endpoints in the SMF and AMF. The SFs are
exposed through URIs with work ongoing to define the used naming conventions for such URIs.

This move from a network function model (in pre-Release 15 systems of 3GPP) to a service-based
model is motivated through the proliferation of data-center operations for mobile network
control-plane services. In other words, typical IT-based methods to service provisioning,
particularly that of virtualization of entire compute resources, are envisioned to being used in
future operations of mobile networks. Hence, operators of such future mobile networks desire to
virtualize SF endpoints and direct (control-plane) traffic to the most appropriate current service
instance in the most appropriate (local) data center. Such a data center is envisioned as being
interconnected through a software-defined wide area network (SD-WAN). "Appropriate" here can
be defined by topological or geographical proximity of the service initiator to the SF endpoint.
Alternatively, network or service instance compute load can be used to direct a request to a more
appropriate (in this case less loaded) instance to reduce possible latency of the overall request.
Such data-center-centric operation is extended with the trend towards regionalization of load
through a "regional office" approach, where micro data centers provide virtualizable resources
that can be used in the service execution, creating a larger degree of freedom when choosing the
"most appropriate" service endpoint for a particular incoming service request.

[SDO-3GPP-SBA] [SDO-3GPP-SBA-ENHANCEMENT]

[SDO-3GPP-SBA]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 5

While the move to a service-based model aligns well with the framework of SFC, choosing the
most appropriate service instance at runtime requires so-called "rechaining" of the SFC since the
relationships in said SFC are defined through Layer 2 or Layer 3 identifiers, which, in turn, are
likely to be different if the chosen service instances reside in different parts of the network (e.g.,
in a regional data center).

Hence, when a traffic flow is forwarded over a service chain expressed as an SFC-compliant SFP,
packets in the traffic flow are processed by the various SF instances, with each SF instance
applying an SF prior to forwarding the packets to the next network node. It is a service-layer
concept and can possibly work over any Virtual network layer and corresponding underlay
network. The underlay network can be IP or alternatively any Layer 2 technology. At the service
layer, SFs are identified using a path identifier and an index. Eventually, this index is translated
to an IP address (or MAC address) of the host where the SF is running. Because of this, any
change-of-service function instance is likely to require a change of the path information since
either the IP address (in the case of changing the execution from one data center to another) or
MAC address will change due to the newly selected SF instance.

Returning to our 5G control-plane example, a user's connection request to access an application
server in the Internet may start with signaling in the control plane to set up user-plane bearers.
The connection request may flow through SFs over a service chain in the control plane, as
deployed by a network operator. Typical SFs in a 5G control plane may include "RAN termination
/ processing", "Slice Selection Function", "AMF", and "SMF". A "Network Slice" is a complete logical
network including Radio Access Network (RAN) and Core Network (CN). Distinct RAN and CN
Slices may exist. A device may access multiple Network Slices simultaneously through a single
RAN. The device may provide Network Slice Selection Assistance Information (NSSAI)
parameters to the network to help it select a RAN and a Core Network part of a slice instance.
Part of the control plane, the Common Control Network Function (CCNF), includes the Network
Slice Selection Function (NSSF), which is in charge of selecting core Network Slice instances. The
classifier, as described in SFC architecture, may reside in the user terminal or at the Evolved
Node B (eNB). These SFs can be configured to be part of an SFC. We can also say that some of the
configurations of the SFP may change at the execution time. For example, the SMF may be
relocated as the user moves and a new SMF may be included in the SFP based on user location.
Figure 1 shows the example SFC described here.

Figure 1: Mapping SFC onto Service Function Execution Points along a Service Function Path

+------+ +---------+ +-----+ +-----+
| User | | Slice | | | | |
| App |-->| Control |->| AMF |-->| SMF |-->
| Fn | | Function| | | | |
+------+ +---------+ +-----+ +-----+

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 6

4. Background
 describes an architecture for the specification, creation, and ongoing maintenance of

SFCs. It includes architectural concepts, principles, and components used in the construction of
composite services through deployment of SFCs. In the following, we outline the parts of this SFC
architecture relevant for our proposed extension, followed by the challenges with this current
framework in the light of our example use case.

[RFC7665]

4.1. Relevant Part of SFC Architecture
The SFC architecture, as defined in , describes architectural components such as SF,
classifier, and SFF. It describes the SFP as the logical path of an SFC. Forwarding traffic along such
an SFP is the responsibility of the SFF. For this, the SFFs in a network maintain the requisite SFP
forwarding information. Such SFP forwarding information is associated with a service path
identifier (SPI) that is used to uniquely identify an SFP. The service forwarding state is
represented by the Service Index (SI) and enables an SFF to identify which SFs of a given SFP
should be applied, and in what order. The SFF also has information that allows it to forward
packets to the next SFF after applying local SFs.

The operational steps to forward traffic are then as follows: Traffic arrives at an SFF from the
network. The SFF determines the appropriate SF the traffic should be forwarded to via
information contained in the SFC encapsulation. After SF processing, the traffic is returned to the
SFF and, if needed, is forwarded to another SF associated with that SFF. If there is another non-
local hop (i.e., to an SF with a different SFF) in the SFP, the SFF further encapsulates the traffic in
the appropriate network transport protocol and delivers it to the network for delivery to the next
SFF along the path. Related to this forwarding responsibility, an SFF should be able to interact
with metadata.

[RFC7665]

4.2. Challenges with Current Framework
As outlined in previous sections, the SFP defines an ordered sequence of specific SF instances
being used for the interaction between initiator and SFs along the SFP. These SFs are addressed
by IP (or any L2/MAC) addresses and defined as next-hop information in the network locator
maps of traversing SFF nodes.

As outlined in our use case, however, the service provider may want to provision SFC nodes
based on dynamically spun-up SF instances so that these (now virtualized) SFs can be reached in
the SFC domain using the SFC underlay layer.

Following the original model of SFC, any change in a specific execution point for a specific SF
along the SFP will require a change of the SFP information (since the new SF execution point
likely carries different IP or L2 address information) and possibly even the next-hop information
in SFFs along the SFP. In case the availability of new SF instances is rather dynamic (e.g., through
the use of container-based virtualization techniques), the current model and realization of SFC
could lead to reducing the flexibility of service providers and increasing the management

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 7

complexity incurred by the frequent changes of (service) forwarding information in the
respective SFF nodes. This is because any change of the SFP (and possibly next-hop info) will
need to go through suitable management cycles.

To address these challenges through a suitable solution, we identify the following requirements:

• Relations between Service Execution Points be abstracted so that, from an SFP point of
view, the Logical Path never changes.

• Deriving the Service Execution Points from the abstract SFP be fast and incur
minimum delay.

• Identification of the Service Execution Points use a combination of Layer 2 or
Layer 3 mechanisms.

The next section outlines a solution to address the issue, allowing for keeping SFC information
(represented in its SFP) intact while addressing the desired flexibility of the service provider.

MUST

SHOULD

SHOULD NOT

5. Name-Based Operation in SFF

5.1. General Idea
The general idea is two pronged. Firstly, we elevate the definition of an SFP onto the level of
"name-based interactions" rather than limiting SFPs to Layer 2 or Layer 3 information only.
Secondly, we extend the operations of the SFF to allow for forwarding decisions that take into
account such name-based interaction while remaining backward compatible to the current SFC
architecture as defined in . In the following sections, we outline these two components
of our solution.

If the next-hop information in the Network Locator Map (NLM) is described using an L2/L3
identifier, the name-based SFF (nSFF) may operate as described for (traditional) SFF, as defined
in . On the other hand, if the next-hop information in the NLM is described as a name,
then the nSFF operates as described in the following sections.

In the following sections, we outline the two components of our solution.

[RFC7665]

[RFC7665]

5.2. Name-Based Service Function Path (nSFP)
The existing SFC framework is defined in . Section 4 outlines that the SFP information
is representing path information based on Layer 2 or Layer 3 information, i.e., MAC or IP
addresses, causing the aforementioned frequent adaptations in cases of execution-point changes.
Instead, we introduce the notion of a "name-based Service Function Path (nSFP)".

In today's networking terms, any identifier can be treated as a name, but we will illustrate the
realization of a "Name-based SFP" through extended SFF operations (see Section 6) based on URIs
as names and HTTP as the protocol of exchanging information. Here, URIs are being used to
name for an SF along the nSFP. Note that the nSFP approach is not restricted to HTTP (as the
protocol) and URIs (as next-hop identifier within the SFP). Other identifiers such as an IP address

[RFC7665]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 8

itself can also be used and are interpreted as a "name" in the nSFP. IP addresses as well as fully
qualified domain names forming complex URIs (uniform resource identifiers), such as
www.example.com/service_name1, are all captured by the notion of "name" in this document.

Generally, nSFPs are defined as an ordered sequence of the "name" of SFs, and a typical nSFP
may look like: 192.0.x.x -> www.example.com -> www.example2.com/service1 ->
www.example2.com/service2.

Our use case in Section 3 can then be represented as an ordered named sequence. An example
for a session initiation that involves an authentication procedure, this could look like 192.0.x.x ->
smf.example.org/session_initiate -> amf.example.org/auth -> smf.example.org/session_complete -
> 192.0.x.x. (Note that this example is only a conceptual one since the exact nature of any future
SBA-based exchange of 5G control-plane functions is yet to be defined by standardization bodies
such as 3GPP).

In accordance with our use case in Section 3, any of these named services can potentially be
realized through more than one replicated SF instance. This leads to making dynamic decisions
on where to send packets along the SAME SFP information, being provided during the execution
of the SFC. Through elevating the SFP onto the notion of name-based interactions, the SFP will
remain the same even if those specific execution points change for a specific service interaction.

The following diagram in Figure 2 describes this nSFP concept and the resulting mapping of
those named interactions onto (possibly) replicated instances.

Figure 2: Mapping SFC onto Service Function Execution Points along a Service Function Path Based
on Virtualized Service Function Instance

 +---+
 |Service Layer |
 | 192.0.x.x --> www.example.com --> www.example2.com --> |
 | || || |
 +----------------------||--------------||-----------------------+
 || ||
 || ||
 +----------------------||--------------||-----------------------+
 |Underlay Network \/ \/ |
 | +--+ +--+ +--+ +--+ +--+ +--+ |
 | | | | | | | | | | | | | |
 | +--+ +--+ +--+ +--+ +--+ +--+ |
 | Compute and Compute and |
 | storage nodes storage nodes |
 +---+

5.3. Name-Based Network Locator Map (nNLM)
In order to forward a packet within an nSFP, we need to extend the NLM as defined in
with the ability to consider name relations based on URIs as well as high-level transport
protocols such as HTTP for means of SFC packet forwarding. Another example for SFC packet
forwarding could be that of Constrained Application Protocol (CoAP).

[RFC8300]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 9

The extended NLM or name-based Network Locator Map (nNLM) is shown in Table 1 as an
example for www.example.com being part of the nSFP. Such extended nNLM is stored at each
SFF throughout the SFC domain with suitable information populated to the nNLM during the
configuration phase.

Alternatively, the extended NLM may be defined with implicit name information rather than
explicit URIs as in Table 1. In the example of Table 2, the next hop is represented as a generic
HTTP service without a specific URI being identified in the extended NLM. In this scenario, the
SFF forwards the packet based on parsing the HTTP request in order to identify the host name or
URI. It retrieves the URI and may apply policy information to determine the destination host/
service.

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 www.example.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 1: Name-Based Network Locator Map

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 HTTP Service HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 2: Name-Based Network Locator Map with Implicit Name
Information

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 10

5.4. Name-Based Service Function Forwarder (nSFF)
It is desirable to extend the SFF of the SFC underlay to handle nSFPs transparently and without
the need to insert any SF into the nSFP. Such extended nSFFs would then be responsible for
forwarding a packet in the SFC domain as per the definition of the (extended) nSFP.

In our example realization for an extended SFF, the solution described in this document uses
HTTP as the protocol of forwarding SFC packets to the next (name-based) hop in the nSFP. The
URI in the HTTP transaction is the name in our nSFP information, which will be used for name-
based forwarding.

Following our reasoning so far, HTTP requests (and more specifically, the plaintext-encoded
requests above) are the equivalent of packets that enter the SFC domain. In the existing SFC
framework, an IP payload is typically assumed to be a packet entering the SFC domain. This
packet is forwarded to destination nodes using the L2 encapsulation. Any layer 2 network can be
used as an underlay network. This notion is now extended to packets being possibly part of an
entire higher-layer application such as HTTP requests. The handling of any intermediate layers,
such as TCP and IP, is left to the realization of the (extended) SFF operations towards the next
(named) hop. For this, we will first outline the general lifecycle of an SFC packet in the following
subsection, followed by two examples for determining next-hop information in Section 6.2.3,
finished up by a layered view on the realization of the nSFF in Section 6.2.4.

5.5. High-Level Architecture

The high-level architecture for name-based operation shown in Figure 3 is very similar to the SFC
architecture as described in . Two new functions are introduced, as shown in the
above diagram: namely, the nSFF and the Name Resolver (NR).

The nSFF is an extension of the existing SFF and is capable of processing SFC packets based on
nNLM information, determining the next SF where the packet should be forwarded, and the
required transport encapsulation (TE). Like standard SFF operation, it adds TE to the SFC packet
and forwards it.

Figure 3: High-Level Architecture

+----------+
| SF1 | +--------+ +------+
| instance |\ | NR | | SF2 |
+----------+ \ +--------+ +------+
 \ || ||
+------------+ \ +-------+ +---------+ +---------+ +-------+
| Classifier |---| nSFF1 |---|Forwarder|---|Forwarder|---| nSFF2 |
+------------+ +-------+ +---------+ +---------+ +-------+
 ||
 +----------+
 | Boundary |
 | node |
 +----------+

[RFC7665]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 11

The NR is a new functional component, capable of identifying the execution endpoints, where a
"named SF" is running, triggered by suitable resolution requests sent by the nSFF. Though this is
similar to DNS function, it is not same. It does not use DNS protocols or data records. A new
procedure to determine the suitable routing/forwarding information towards the nSFF serving
the next hop of the SFP is used. The details are described later.

The other functional components, such as classifier and SF, are the same as described in SFC
architecture, as defined in , while the Forwarders shown in the above diagram are
traditional Layer 2 switches.

[RFC7665]

Step 1:

Step 2:

Step 3:

5.6. Operational Steps
In the proposed solution, the operations are realized by the name-based SFF, called "nSFF". We
utilize the high-level architecture in Figure 3 to describe the traversal between two SF instances
of an nSFP-based transaction in an example chain of: 192.0.x.x -> SF1 (www.example.com) -> SF2
(www.example2.com) -> SF3 -> ...

Service Function 3 (SF3) is assumed to be a classical SF; hence, existing SFC mechanisms can be
used to reach it and will not be considered in this example.

According to the SFC lifecycle, as defined in , based on our example chain above, the
traffic originates from a classifier or another SFF on the left. The traffic is processed by the
incoming nSFF1 (on the left side) through the following steps. The traffic exits at nSFF2.

[RFC7665]

At nSFF1, the following nNLM is assumed:

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 www.example.com HTTP

10 252 www.example2.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 3: nNLM at nSFF1

nSFF1 removes the previous transport encapsulation (TE) for any traffic originating
from another SFF or classifier (traffic from an SF instance does not carry any TE and is
therefore directly processed at the nSFF).
nSFF1 then processes the Network Service Header (NSH) information, as defined in

, to identify the next SF at the nSFP level by mapping the NSH information to[RFC8300]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 12

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

the appropriate entry in its nNLM (see Table 3) based on the provided SPI/SI
information in the NSH (see Section 4) in order to determine the name-based identifier
of the next-hop SF. With such nNLM in mind, the nSFF searches the map for SPI = 10
and SI = 253. It identifies the next hop as = www.example.com and HTTP as the protocol
to be used. Given that the next hop resides locally, the SFC packet is forwarded to the
SF1 instance of www.example.com. Note that the next hop could also be identified from
the provided HTTP request, if the next-hop information was identified as a generic
HTTP service, as defined in Section 5.3.
The SF1 instance then processes the received SFC packet according to its service
semantics and modifies the NSH by setting SPI = 10 and SI = 252 for forwarding the
packet along the SFP. It then forwards the SFC packet to its local nSFF, i.e., nSFF1.
nSFF1 processes the NSH of the SFC packet again, now with the NSH modified (SPI = 10,
SI = 252) by the SF1 instance. It retrieves the next-hop information from its nNLM in
Table 3 to be www.example2.com. Due to this SF not being locally available, the nSFF
consults any locally available information regarding routing/forwarding towards a
suitable nSFF that can serve this next hop.
If such information exists, the Packet (plus the NSH information) is marked to be sent
towards the nSFF serving the next hop based on such information in Step 8.
If such information does not exist, nSFF1 consults the NR to determine the suitable
routing/forwarding information towards the identified nSFF serving the next hop of the
SFP. For future SFC packets towards this next hop, such resolved information may be
locally cached, avoiding contacting the NR for every SFC packet forwarding. The packet
is now marked to be sent via the network in Step 8.
Utilizing the forwarding information determined in Steps 6 or 7, nSFF1 adds the
suitable TE for the SFC packet before forwarding via the forwarders in the network
towards the next nSFF22.
When the Packet (+NSH+TE) arrives at the outgoing nSFF2, i.e., the nSFF serving the
identified next hop of the SFP, it removes the TE and processes the NSH to identify the
next-hop information. At nSFF2 the nNLM in Table 4 is assumed. Based on this nNLM
and NSH information where SPI = 10 and SI = 252, nSFF2 identifies the next SF as
www.example2.com.

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 252 www.example2.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 4: nNLM at SFF2

If the next hop is locally registered at the nSFF, it forwards the packet (+NSH) to the SF
instance using suitable IP/MAC methods for doing so.

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 13

If the next hop is not locally registered at the nSFF, the outgoing nSFF adds new TE
information to the packet and forwards the packet (+NSH+TE) to the next SFF or
boundary node, as shown in Table 4.

6. nSFF Forwarding Operations
This section outlines the realization of various nSFF forwarding operations in Section 5.6.
Although the operations in Section 5 utilize the notion of name-based transactions in general, we
exemplify the operations here in Section 5 specifically for HTTP-based transactions to ground our
description into a specific protocol for such name-based transaction. We will refer to the various
steps in each of the following subsections.

6.1. nSFF Protocol Layers
Figure 4 shows the protocol layers based on the high-level architecture in Figure 3.

The nSFF component here is shown as implementing a full incoming/outgoing TCP/IP protocol
stack towards the local SFs, while implementing the nSFF-NR and nSFF-nSFF protocols based on
the descriptions in Section 6.2.3.

For the exchange of HTTP-based SF transactions, the nSFF terminates incoming TCP connections
as well as outgoing TCP connections to local SFs, e.g., the TCP connection from SF1 terminates at
nSFF1, and nSFF1 may store the connection information such as socket information. It also
maintains the mapping information for the HTTP request such as originating SF, destination SF,
and socket ID. nSFF1 may implement sending keep-alive messages over the socket to maintain
the connection to SF1. Upon arrival of an HTTP request from SF1, nSFF1 extracts the HTTP
Request and forwards it towards the next node as outlined in Section 6.2. Any returning response
is mapped onto the suitable open socket (for the original request) and sent towards SF1.

Figure 4: Protocol Layers

+-------+ +------+----+ +----+-----+
|App | | | | +--------+ | | |
|HTTP | |--------> | | NR | |nSFF----->|--
|TCP |->| TCP |nSFF| +---/\---+ | | TCP | |
|IP | | IP | | || | | IP | |
+-------+ +------+----+ +---------+ +---------+ +----------+ |
| L2 | | L2 |->|Forwarder|-->|Forwarder|-->| L2 | |
+-------+ +------+----+ +---------+ +---------+ +----------+ |
 SF1 nSFF1 nSFF2
|
 +-------+ |
 | App |/ |
 | HTTP | -----------+
 | TCP |\
 | IP |
 | L2 |
 +-------+
 SF2

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 14

At the outgoing nSFF2, the destination SF2/Host is identified from the HTTP request message. If
no TCP connection exists to the SF2, a new TCP connection is opened towards the destination SF2
and the HTTP request is sent over said TCP connection. The nSFF2 may also save the TCP
connection information (such as socket information) and maintain the mapping of the socket
information to the destination SF2. When an HTTP response is received from SF2 over the TCP
connection, nSFF2 extracts the HTTP response, which is forwarded to the next node. nSFF2 may
maintain the TCP connection through keep-alive messages.

6.2. nSFF Operations
In this section, we present three key aspects of operations for the realization of the steps in
Section 5.6, namely, (i) the registration of local SFs (for Step 3 in Section 5.6), (ii) the forwarding
of SFC packets to and from local SFs (for Steps 3, 4, and 10 in Section 5.6), (iii) the forwarding to a
remote SF (for Steps 5, 6, and 7 in Section 5.6) and to the NR as well as (iv) for the lookup of a
suitable remote SF (for Step 7 in Section 5.6). We also cover aspects of maintaining local lookup
information for reducing lookup latency and other issues.

6.2.1. Forwarding between nSFFs and nSFF-NRs

Forwarding between the distributed nSFFs as well as between nSFFs and NRs is realized over the
operator network via a path-based approach. A path-based approach utilizes path information
provided by the source of the packet for forwarding said packet in the network. This is similar to
segment routing albeit differing in the type of information provided for such source-based
forwarding as described in this section. In this approach, the forwarding information to a remote
nSFF or the NR is defined as a "path identifier" (pathID) of a defined length where said length
field indicates the full pathID length. The payload of the packet is defined by the various
operations outlined in the following subsections, resulting in an overall packet being transmitted.
With this, the generic forwarding format (GFF) for transport over the operator network is
defined in Figure 5 with the length field defining the length of the pathID provided.

• Length (12 bits): Defines the length of the pathID, i.e., up to 4096 bits
• Path ID: Variable-length bit field derived from IPv6 source and destination address

For the pathID information, solutions such as those in can be used. Here, the IPv6
source and destination addresses are used to realize a so-called path-based forwarding from the
incoming to the outgoing nSFF or the NR. The forwarders in Figure 4 are realized via SDN
(software-defined networking) switches, implementing an AND/CMP operation based on
arbitrary wildcard matching over the IPv6 source and destination addresses as outlined in

. Note that in the case of using IPv6 address information for path-based forwarding,
the step of removing the TE at the outgoing nSFF in Figure 4 is realized by utilizing the provided

Figure 5: Generic Forwarding Format (GFF)

+---------+-----------------+------------------------//------------+
		//
Length	Path ID	Payload //
(12 bits)		//
+---------+-----------------+--------------------//----------------+

[Reed2016]

[Reed2016]

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 15

(existing) IP header (which was used for the purpose of the path-based forwarding in
) for the purpose of next-hop forwarding such as that of IP-based routing. As

described in Step 8 of the extended nSFF operations, this forwarding information is used as
traffic encapsulation. With the forwarding information utilizing existing IPv6 information, IP
headers are utilized as TE in this case. The next-hop nSFF (see Figure 4) will restore the IP header
of the packet with the relevant IP information used to forward the SFC packet to SF2, or it will
create suitable TE information to forward the information to another nSFF or boundary node.
Forwarding operations at the intermediary forwarders, i.e., SDN switches, examine the pathID
information through a flow-matching rule in which a specific switch-local output port is
represented through the specific assigned bit position in the pathID. Upon a positive match in
said rule, the packet is forwarded on said output port.

Alternatively, the solution in suggests using a so-called BIER (Binary Indexed
Explicit Replication) underlay. Here, the nSFF would be realized at the ingress to the BIER
underlay, injecting the SFC packet header (plus the Network Service Header (NSH)) with BIER-
based traffic encapsulation into the BIER underlay with each of the forwarders in Figure 4 being
realized as a so-called Bit-Forwarding Router (BFR) .

[Reed2016]

[BIER-MULTICAST]

[RFC8279]

6.2.1.1. Transport Protocol Considerations
Given that the proposed solution operates at the "named-transaction" level, particularly for HTTP
transactions, forwarding between nSFFs and/or NRs be implemented via a transport
protocol between nSFFs and/or NRs in order to provide reliability, segmentation of large GFF
packets, and flow control, with the GFF in Figure 5 being the basic forwarding format for this.

Note that the nSFFs act as TCP proxies at ingress and egress, thus terminating incoming and
initiating outgoing HTTP sessions to SFs.

Figure 6 shows the packet format being used for the transmission of data, being adapted from
the TCP header. Segmentation of large transactions into single transport protocol packets is
realized through maintaining a "Sequence number". A "Checksum" is calculated over a single
data packet with the ones-complement TCP checksum calculation being used. The "Window Size"
field indicates the current maximum number of transport packets that are allowed in-flight by
the egress nSFF. A data packet is sent without a "Data" field to indicate the end of the (e.g., HTTP)
transaction.

Note that, in order to support future named transactions based on other application protocols,
such as Constrained Application Protocol (CoAP), future versions of the transport protocol
introduce a "Type" field that indicates the type of application protocol being used between SF and
nSFF with "Type" 0x01 proposed for HTTP. This is being left for future study.

SHOULD

MAY

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 16

Given the path-based forwarding being used between nSFFs, the transport protocol between
nSFFs utilizes negative acknowledgements from the egress nSFF towards the ingress nSFF. The
transport protocol negative Acknowledgment (NACK) packet carries the number of NACKs as
well as the specific sequence numbers being indicated as lost in the "NACK number" field(s) as
shown in Figure 7.

If the indicated number of NACKs in a received NACK packet is nonzero, the ingress nSFF will
retransmit all sequence numbers signaled in the packet while decreasing its congestion window
size for future transmissions.

If the indicated number of NACKs in a received NACK packet is zero, it will indicate the current
congestion window as being successfully (and completely) being transmitted, increasing the
congestion window size if smaller than the advertised "Window Size" in Figure 6.

The maintenance of the congestion window is subject to realization at the ingress nSFF and left
for further study in nSFF realizations.

Figure 6: Transport Protocol Data Packet Format

 +--+
 | 16 bits | 16 bits |
 +--+
 | Sequence number |
 +--+
 | Checksum | Window Size |
 +--+
 | ... |
 | Data (Optional) |
 +--+

Figure 7: Transport Protocol NACK Packet Format

 +-----------------------+----------------------+
 | 16 bits | 16 bits |
 +--+
 | Number of NACKs | +
 +--+
 | NACK number |
 +--+
 + ... NACK number +
 +--+

6.2.2. SF Registration

As outlined in Steps 3 and 10 of Section 5.6, the nSFF needs to determine if the SF derived from
the Name-Based Network Locator (nNLM) is locally reachable or whether the packet needs to be
forwarded to a remote SFF. For this, a registration mechanism is provided for such local SF with
the local nSFF. Two mechanisms can be used for this:

1. SF-initiated: We assume that the SF registers its Fully Qualified Domain Name (FQDN) to
the local nSFF. As local mechanisms, we foresee that either a Representational State

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 17

Transfer (REST-based) interface over the link-local link or configuration of the nSFF
(through configuration files or management consoles) can be utilized. Such local
registration events lead to the nSFF registering the given FQDN with the NR in
combination with a system-unique nSFF identifier that is being used for path-
computation purposes in the NR. For the registration, the packet format in Figure 8 is
used (inserted as the payload in the GFF of Figure 5 with the pathID towards the NR).

▪ R/D: 1-bit length (0 for Register, 1 for Deregister)

▪ hash(FQDN): 16-bit length for a hash over the FQDN of the SF

▪ nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF

We assume that the pathID towards the NR is known to the nSFF through configuration
means.

The NR maintains an internal table that associates the hash(FQDN), the nSFF_id
information, as well as the pathID information being used for communication between
nSFFs and NRs. The nSFF locally maintains a mapping of registered FQDNs to IP
addresses for the latter using link-local private IP addresses.

1. Orchestration-based: In this mechanism, we assume that SFC to be orchestrated and the
chain to be provided through an orchestration template with FQDN information
associated to a compute/storage resource that is being deployed by the orchestrator. We
also assume knowledge at the orchestrator of the resource topology. Based on this, the
orchestrator can now use the same REST-based protocol defined in option 1 to instruct
the NR to register the given FQDN, as provided in the template, at the nSFF it has
identified as being the locally servicing nSFF, provided as the system-unique nSFF
identifier.

Figure 8: Registration Packet Format

+---------+------------------+----------------+
R/D	hash(FQDN)	nSFF_ID
(1 bit)	(16 bits)	(8 bits)
+---------+------------------+----------------+

6.2.3. Local SF Forwarding

There are two cases of local SF forwarding, namely, the SF sending an SFC packet to the local
nSFF (incoming requests) or the nSFF sending a packet to the SF (outgoing requests) as part of
Steps 3 and 10 in Section 5.6. In the following, we outline the operation for HTTP as an example-
named transaction.

As shown in Figure 4, incoming HTTP requests from SFs are extracted by terminating the
incoming TCP connection at their local nSFFs at the TCP level. The nSFF maintain a
mapping of open TCP sockets to HTTP requests (utilizing the URI of the request) for HTTP
response association.

MUST

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 18

For outgoing HTTP requests, the nSFF utilizes the maintained mapping of locally registered
FQDNs to link-local IP addresses (see Section 6.2.2, option 1). Hence, upon receiving an SFC
packet from a remote nSFF (in Step 9 of Section 5.6), the nSFF determines the local existence of
the SF through the registration mechanisms in Section 6.2.2. If said SF does exist locally, the HTTP
(+NSH) packet, after stripping the TE, is sent to the local SF as Step 10 in Section 5.6 via a TCP-
level connection. Outgoing nSFFs keep TCP connections open to local SFs for improving
SFC packet delivery in subsequent transactions.

SHOULD

6.2.4. Handling of HTTP Responses

When executing Steps 3 and 10 in Section 5.6, the SFC packet will be delivered to the locally
registered next hop. As part of the HTTP protocol, responses to the HTTP request will need to be
delivered on the return path to the originating nSFF (i.e., the previous hop). For this, the nSFF
maintains a list of link-local connection information, e.g., sockets to the local SF and the pathID
on which the request was received. Once receiving the response, nSFF consults the table to
determine the pathID of the original request, forming a suitable GFF-based packet to be returned
to the previous nSFF.

When receiving the HTTP response at the previous nSFF, the nSFF consults the table of (locally)
open sockets to determine the suitable local SF connection, mapping the received HTTP response
URI to the stored request URI. Utilizing the found socket, the HTTP response is forwarded to the
locally registered SF.

6.2.5. Remote SF Forwarding

In Steps 5, 6, 7, and 8 of Section 5.6, an SFC packet is forwarded to a remote nSFF based on the
nNLM information for the next hop of the nSFP. Section 6.2.5.1 handles the case of suitable
forwarding information to the remote nSFF not existing, therefore consulting the NR to obtain
suitable information. Section 6.2.5.2 describes the maintenance of forwarding information at the
local nSFF. Section 6.2.5.3 describes the update of stale forwarding information. Note that the
forwarding described in Section 6.2.1 is used for the actual forwarding to the various nSFF
components. Ultimately, Section 6.2.5.4 describes the forwarding to the remote nSFF via the
forwarder network.

6.2.5.1. Remote SF Discovery
The nSFF communicates with the NR for two purposes: namely, the registration and discovery of
FQDNs. The packet format for the former was shown in Figure 8 in Section 6.2.2, while Figure 9
outlines the packet format for the discovery request.

Figure 9: Discovery Packet Format

+--------------+-------------+ +--------+-----------------//--------+
				//
hash(FQDN)	nSFF_ID		Length	pathID //
(16 bits)	(8 bits)		(4 bits)	//
+--------------+-------------+ +--------+-------------//------------+
 Path Request Path Response

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 19

For Path Request:

• hash(FQDN): 16-bit length for a hash over the FQDN of the SF
• nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF

For Path Response:

• Length: 4-bit length that defines the length of the pathID
• Path ID: Variable-length bit field derived from IPv6 source and destination address

A path to a specific FQDN is requested by sending a hash of the FQDN to the NR together with its
nSFF_id, receiving as a response a pathID with a length identifier. The NR maintain a
table of discovery requests that map discovered (hash of) FQDN to the nSFF_id that requested it
and the pathID that is being calculated as a result of the discovery request.

The discovery request for an FQDN that has not previously been served at the nSFF (or for an
FQDN whose pathID information has been flushed as a result of the update operations in Section
6.2.5.3) results in an initial latency incurred by this discovery through the NR, while any SFC
packet sent over the same SFP in a subsequent transaction will utilize the nSFF-local mapping
table. Such initial latency can be avoided by prepopulating the FQDN-pathID mapping
proactively as part of the overall orchestration procedure, e.g., alongside the distribution of the
nNLM information to the nSFF.

SHOULD

6.2.5.2. Maintaining Forwarding Information at Local nSFF
Each nSFF maintain an internal table that maps the (hash of the) FQDN information to a
suitable pathID. As outlined in Step 7 of Section 5.6, if a suitable entry does not exist for a given
FQDN, the pathID information is requested with the operations in Section 6.2.5.1 and the suitable
entry is locally created upon receiving a reply with the forwarding operation being executed as
described in Section 6.2.1.

If such an entry does exist (i.e., Step 6 of Section 5.6), the pathID is locally retrieved and used for
the forwarding operation in Section 6.2.1.

MUST

6.2.5.3. Updating Forwarding Information at nSFF
The forwarding information maintained at each nSFF (see Section 6.2.5.2) might need to be
updated for three reasons:

1. An existing SF is no longer reachable: In this case, the nSFF with which the SF is locally
registered deregisters the SF explicitly at the NR by sending the packet in Figure 6 with
the hashed FQDN and the R/D bit set to 1 (for deregister).

2. Another SF instance has become reachable in the network (and, therefore, might
provide a better alternative to the existing SF): In this case, the NR has received another
packet with a format defined in Figure 7 but a different nSFF_id value.

3. Links along paths might no longer be reachable: The NR might use a suitable
southbound interface to transport networks to detect link failures, which it associates to
the appropriate pathID bit position.

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 20

For this purpose, the packet format in Figure 10 is sent from the NR to all affected nSFFs, using
the generic format in Figure 5.

• Type: 1-bit length (0 for Nsff ID, 1 for Link ID)
• #IDs: 8-bit length for number of IDs in the list
• IDs: List of IDs (Nsff ID or Link ID)

The pathID to the affected nSFFs is computed as the binary OR over all pathIDs to those nSFF_ids
affected where the pathID information to the affected nSFF_id values is determined from the NR-
local table maintained in the registration/deregistration operation of Section 6.2.2.

The pathID may include the type of information being updated (e.g., node identifiers of leaf
nodes or link identifiers for removed links). The node identifier itself may be a special identifier
to signal "ALL NODES" as being affected. The node identifier may signal changes to the network
that are substantial (e.g., parallel link failures). The node identifier may trigger (e.g., recommend)
purging of the entire path table (e.g., rather than the selective removal of a few nodes only).

It will include the information according to the type. The included information may also be
related to the type and length information for the number of identifiers being provided.

In cases 1 and 2, the Type bit is set to 1 (type nSFF_id) and the affected nSFFs are determined by
those nSFFs that have previously sent SF discovery requests, utilizing the optional table mapping
previously registered FQDNs to nSFF_id values. If no table mapping the (hash of) FQDN to
nSFF_id is maintained, the update is sent to all nSFFs. Upon receiving the path update at the
affected nSFF, all appropriate nSFF-local mapping entries to pathIDs for the hash(FQDN)
identifiers provided will be removed, leading to a new NR discovery request at the next remote
nSFF forwarding to the appropriate FQDN.

In case 3, the Type bit is set to 0 (type linkID) and the affected nSFFs are determined by those
nSFFs whose discovery requests have previously resulted in pathIDs that include the affected
link, utilizing the optional table mapping previously registered FQDNs to pathID values (see
Section 6.2.5.1). Upon receiving the node identifier information in the path update, the affected
nSFF will check its internal table that maps FQDNs to pathIDs to determine those pathIDs
affected by the link problems and remove path information that includes the received node
identifier(s). For this, the pathID entries of said table are checked against the linkID values
provided in the ID entry of the path update through a binary AND/CMP operation to check the
inclusion of the link in the pathIDs to the FQDNs. If any pathID is affected, the FQDN-pathID entry
is removed, leading to a new NR discovery request at the next remote nSFF forwarding to the
appropriate FQDN.

Figure 10: Path Update Format

+---------+-----------------+--------------//----+
		//
Type	#IDs	IDs //
(1 bit)	(8 bits)	//
+---------+-----------------+----------//--------+

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 21

[RFC2119]

[RFC3986]

[RFC7665]

[RFC8174]

9. References

9.1. Normative References

, , ,
, , March 1997,
.

,
, , , , January 2005,

.

,
, , , October 2015,

.

, ,
, , , May 2017,

.

6.2.5.4. Forwarding to Remote nSFF
Once Steps 5, 6, and 7 in Section 5.6 are being executed, Step 8 finally sends the SFC packet to the
remote nSFF, utilizing the pathID returned in the discovery request (Section 6.2.5.1) or retrieved
from the local pathID mapping table. The SFC packet is placed in the payload of the generic
forwarding format in Figure 5 together with the pathID, and the nSFF eventually executes the
forwarding operations in Section 6.2.1.

7. IANA Considerations
This document has no IANA actions.

8. Security Considerations
Sections 5 and 6 describe the forwarding of SFC packets between named SFs based on URIs
exchanged in HTTP messages. Security is needed to protect the communications between
originating node and Ssff, between one Nsff and the next Nsff, and between Nsff and destination.
TLS is sufficient for this and be used. The TLS handshake allows to determine the FQDN,
which, in turn, is enough for the service routing decision. Supporting TLS also allows the
possibility of HTTPS-based transactions.

It should be noted (per) that what a URI resolves to is not necessarily stable. This can
allow flexibility in deployment, as described in this document, but may also result in unexpected
behavior and could provide an attack vector as the resolution of a URI could be "hijacked"
resulting in packets being steered to the wrong place. This could be particularly important if the
SFC is intended to send packets for processing at security functions. Such hijacking is a new
attack surface introduced by using a separate NR.

SHOULD

[RFC3986]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Berners-Lee, T., Fielding, R., and L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Halpern, J., Ed. and C. Pignataro, Ed. "Service Function Chaining (SFC)
Architecture" RFC 7665 DOI 10.17487/RFC7665 <https://www.rfc-
editor.org/info/rfc7665>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 22

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8279]

[RFC8300]

[BIER-MULTICAST]

[Reed2016]

[Schlinker2017]

[SDO-3GPP-SBA]

[SDO-3GPP-SBA-ENHANCEMENT]

,
, ,

, November 2017, .

,
, , , January 2018,

.

9.2. Informative References

,
, ,

, 28 June 2019,
.

,
, ,

, May 2016,
.

,
, , August 2017,

.

, ,
, September 2019, .

,
, , February 2018,

.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A., Przygienda, T., and S. Aldrin
"Multicast Using Bit Index Explicit Replication (BIER)" RFC 8279 DOI 10.17487/
RFC8279 <https://www.rfc-editor.org/info/rfc8279>

Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed. "Network Service Header
(NSH)" RFC 8300 DOI 10.17487/RFC8300 <https://www.rfc-
editor.org/info/rfc8300>

Trossen, D., Rahman, A., Wang, C., and T. Eckert "Applicability of BIER
Multicast Overlay for Adaptive Streaming Services" Work in Progress Internet-
Draft, draft-ietf-bier-multicast-http-response-01 <https://
tools.ietf.org/html/draft-ietf-bier-multicast-http-response-01>

Reed, M.J., Al-Naday, M., Thomas, N., Trossen, D., Petropoulos, G., and S. Spirou
"Stateless multicast switching in software defined networks" IEEE ICC 2016 DOI
10.1109/ICC.2016.7511036 <https://ieeexplore.ieee.org/
document/7511036>

Schlinker, B., Kim, H., Cui, T., Katz-Bassett, E., Madhyastha, H., Cunha, I., Quinn,
J., Hassan, S., Lapukhov, P., and H. Zeng "Engineering Egress with Edge Fabric,
Steering Oceans of Content to the World" ACM SIGCOMM 2017
<https://research.fb.com/wp-content/uploads/2017/08/sigcomm17-
final177-2billion.pdf>

3GPP "Technical Realization of Service Based Architecture" 3GPP TS 29.500
V15.5.0 <https://www.3gpp.org/ftp/Specs/html-info/29500.htm>

3GPP "New SID for Enhancements to the Service-Based 5G
System Architecture" 3GPP S2-182904 <https://www.3gpp.org/
ftp/tsg_sa/WG2_Arch/TSGS2_126_Montreal/Docs/S2-182904.zip>

Acknowledgements
The authors would like to thank Dirk von Hugo and Andrew Malis for their reviews and valuable
comments. We would also like to thank Joel Halpern, the chair of the SFC WG, and Adrian Farrel
for guiding us through the Independent Submission Editor (ISE) path.

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 23

https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc8300
https://www.rfc-editor.org/info/rfc8300
https://tools.ietf.org/html/draft-ietf-bier-multicast-http-response-01
https://tools.ietf.org/html/draft-ietf-bier-multicast-http-response-01
https://ieeexplore.ieee.org/document/7511036
https://ieeexplore.ieee.org/document/7511036
https://research.fb.com/wp-content/uploads/2017/08/sigcomm17-final177-2billion.pdf
https://research.fb.com/wp-content/uploads/2017/08/sigcomm17-final177-2billion.pdf
https://www.3gpp.org/ftp/Specs/html-info/29500.htm
https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_126_Montreal/Docs/S2-182904.zip
https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_126_Montreal/Docs/S2-182904.zip

Authors' Addresses
Dirk Trossen
InterDigital Europe, Ltd
64 Great Eastern Street, 1st Floor
London
EC2A 3QR
United Kingdom

 Dirk.Trossen@InterDigital.com Email:

Debashish Purkayastha
InterDigital Communications, LLC
1001 E Hector St

, Conshohocken PA
United States of America

 Debashish.Purkayastha@InterDigital.com Email:

Akbar Rahman
InterDigital Communications, LLC
1000 Sherbrooke Street West

 Montreal
Canada

 Akbar.Rahman@InterDigital.com Email:

RFC 8677 Name-Based SFF November 2019

Trossen, et al. Informational Page 24

mailto:Dirk.Trossen@InterDigital.com
mailto:Debashish.Purkayastha@InterDigital.com
mailto:Akbar.Rahman@InterDigital.com

	RFC 8677
	Name-Based Service Function Forwarder (nSFF) Component within a ServiceÂ€FunctionÂ€ChainingÂ€(SFC) Framework
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Example Use Case: 5G Control-Plane Services
	4. Background
	4.1. Relevant Part of SFC Architecture
	4.2. Challenges with Current Framework

	5. Name-Based Operation in SFF
	5.1. General Idea
	5.2. Name-Based Service Function Path (nSFP)
	5.3. Name-Based Network Locator Map (nNLM)
	5.4. Name-Based Service Function Forwarder (nSFF)
	5.5. High-Level Architecture
	5.6. Operational Steps

	6. nSFF Forwarding Operations
	6.1. nSFF Protocol Layers
	6.2. nSFF Operations
	6.2.1. Forwarding between nSFFs and nSFF-NRs
	6.2.1.1. Transport Protocol Considerations

	6.2.2. SF Registration
	6.2.3. Local SF Forwarding
	6.2.4. Handling of HTTP Responses
	6.2.5. Remote SF Forwarding
	6.2.5.1. Remote SF Discovery
	6.2.5.2. Maintaining Forwarding Information at Local nSFF
	6.2.5.3. Updating Forwarding Information at nSFF
	6.2.5.4. Forwarding to Remote nSFF

	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 Name-Based Service Function Forwarder (nSFF) Component within a Service Function Chaining (SFC) Framework

 InterDigital Europe, Ltd

 64 Great Eastern Street, 1st Floor
 London
 EC2A 3QR
 United Kingdom

 Dirk.Trossen@InterDigital.com

 InterDigital Communications, LLC

 1001 E Hector St
 Conshohocken
 PA

 United States of America

 Debashish.Purkayastha@InterDigital.com

 InterDigital Communications, LLC

 1000 Sherbrooke Street West
 Montreal

 Canada

 Akbar.Rahman@InterDigital.com

 service function
 SF
 SFF
 nSFF
 SFC
 SFP
 NSH
 FQDN
 5G
 NSSAI
 CCNF
 NSSF
 3GPP

 Adoption of cloud and fog technology allows operators to deploy a
 single "Service Function" (SF) to multiple "execution locations". The
 decision to steer traffic to a specific location may change frequently
 based on load, proximity, etc. Under the current Service Function
 Chaining (SFC) framework, steering traffic dynamically to the different
 execution endpoints requires a specific "rechaining", i.e., a change in
 the service function path reflecting the different IP endpoints to be
 used for the new execution points. This procedure may be complex and
 take time. In order to simplify rechaining and reduce the time to
 complete the procedure, we discuss separating the logical Service
 Function Path (SFP) from the specific execution endpoints. This can be
 done by identifying the SFs using a name rather than a
 routable IP endpoint (or Layer 2 address). This document describes the
 necessary extensions, additional functions, and protocol details in the
 Service Function Forwarder (SFF) to handle name-based relationships.

	 This document presents InterDigital's approach to name-based SFC.
	 It does not represent IETF consensus and is presented here so that
	 the SFC community may benefit from considering this mechanism and
	 the possibility of its use in the edge data centers.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Terminology

 . Example Use Case: 5G Control-Plane Services

 . Background

 . Relevant Part of SFC Architecture

 . Challenges with Current Framework

 . Name-Based Operation in SFF

 . General Idea

 . Name-Based Service Function Path (nSFP)

 . Name-Based Network Locator Map (nNLM)

 . Name-Based Service Function Forwarder (nSFF)

 . High-Level Architecture

 . Operational Steps

 . nSFF Forwarding Operations

 . nSFF Protocol Layers

 . nSFF Operations

 . Forwarding between nSFFs and nSFF-NRs

 . SF Registration

 . Local SF Forwarding

 . Handling of HTTP Responses

 . Remote SF Forwarding

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction

 The requirements on today's networks are very diverse, enabling
 multiple use cases such as the Internet of Things (IoT), Content
 Distribution, Gaming, and Network functions such as Cloud Radio Access
 Network (RAN) and 5G control planes based on a Service-Based
 Architecture (SBA). These services are deployed, provisioned, and managed
 using Cloud-based techniques as seen in the IT world. Virtualization
 of compute and storage resources is at the heart of providing (often
 web) services to end users with the ability to quickly provision
 virtualized service endpoints through, e.g., container-based
 techniques. This creates the ability to dynamically compose new
 services from existing services. It also allows an operator to move a
 service instance in response to user mobility or to change resource
	availability. When moving from a purely "distant cloud" model to one
 of localized micro data centers with regional, metro, or even street
 level, often called "edge" data centers, such virtualized service
 instances can be instantiated in topologically different locations
 with the overall "distant" data center now being transformed into a
 network of distributed ones.

The reaction of content providers, like Facebook, Google, NetFlix, and others,
is not just to rely on deploying content servers at the ingress of the
customer network. Instead, the trend is towards deploying multiple Point of
Presences (POPs) within the customer network, those POPs being connected
through proprietary mechanisms
to push content.

 The Service Function Chaining (SFC) framework allows network operators as well as service
 providers to compose new services by chaining individual "service
 functions". Such chains are expressed through explicit relationships
 of functional components (the SFs) realized through their direct Layer
 2 (e.g., Media Access Control (MAC) address) or Layer 3 (e.g., IP
 address) relationship as defined through next-hop information that is
 being defined by the network operator. See for more background on SFC.

 In a dynamic service environment of distributed data centers such as
 the one outlined above, with the ability to create and recreate
 service endpoints frequently, the SFC framework requires
 reconfiguring the existing chain through information based on the new
 relationships, causing overhead in a number of components,
 specifically the orchestrator that initiates the initial SFC and any
 possible reconfiguration.

	
This document describes how such changes can be handled without involving the
initiation of new and reconfigured SFCs. This is accomplished by lifting the
chaining relationship from Layer 2 and Layer 3 information to that of SF
"names", which can, for instance, be expressed as URIs.

In order to transparently support such named relationships, we propose to
embed the necessary functionality directly into the Service Function Forwarder
(SFF) as described in . With that,
the SFF described in this document allows for keeping an existing SFC intact,
as described by its Service Function Path (SFP), while enabling the selection
of appropriate service function endpoint(s) during the traversal of packets
through the SFC. This document is an Independent Submission to the RFC
Editor. It is not an output of the IETF SFC WG.

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Example Use Case: 5G Control-Plane Services

	 We exemplify the need for chaining SFs at the level
	 of a service name through a use case stemming from the current
	 3GPP Release 16 work on Service Based Architecture (SBA) , . In
	 this work, mobile network control planes are proposed to be
	 realized by replacing the traditional network function interfaces
	 with a fully service-based one. HTTP was chosen as the
	 application-layer protocol for exchanging suitable service
	 requests . With this in mind, the
	 exchange between, for example, the 3GPP-defined (Rel. 15) Session
	 Management Function (SMF) and the Access and Mobility Management
	 Function (AMF) in a 5G control plane is being described as a set
	 of web-service-like requests that are, in turn, embedded into HTTP
	 requests. Hence, interactions in a 5G control plane can be
	 modeled based on SFCs where the relationship
	 is between the specific (IP-based) SF endpoints that
	 implement the necessary service endpoints in the SMF and AMF. The
	 SFs are exposed through URIs with work ongoing to
	 define the used naming conventions for such URIs.

	 This move from a network function model (in pre-Release 15
	 systems of 3GPP) to a service-based model is motivated through
	 the proliferation of data-center operations for mobile network
	 control-plane services. In other words, typical IT-based methods
	 to service provisioning, particularly that of virtualization of
	 entire compute resources, are envisioned to being used in future
	 operations of mobile networks. Hence, operators of such future
	 mobile networks desire to virtualize SF endpoints and direct
	 (control-plane) traffic to the most appropriate current service
	 instance in the most appropriate (local) data center. Such a data
	 center is envisioned as being interconnected through a
	 software-defined wide area network (SD-WAN). "Appropriate" here
	 can be defined by topological or geographical proximity of the
	 service initiator to the SF endpoint. Alternatively, network or
	 service instance compute load can be used to direct a request to
	 a more appropriate (in this case less loaded) instance to reduce
	 possible latency of the overall request. Such data-center-centric
	 operation is extended with the trend towards regionalization of
	 load through a "regional office" approach, where micro data
	 centers provide virtualizable resources that can be used in the
	 service execution, creating a larger degree of freedom when
	 choosing the "most appropriate" service endpoint for a particular
	 incoming service request.

	 While the move to a service-based model aligns well with the
	 framework of SFC, choosing the most appropriate service instance
	 at runtime requires so-called "rechaining" of the SFC since the
	 relationships in said SFC are defined through Layer 2 or Layer 3
	 identifiers, which, in turn, are likely to be different if the
	 chosen service instances reside in different parts of the network
	 (e.g., in a regional data center).

 Hence, when a traffic flow is forwarded over a service chain
 expressed as an SFC-compliant SFP, packets in the traffic flow are
 processed by the various SF instances, with each SF instance applying
 an SF prior to forwarding the packets to the next
 network node.

It is a service-layer concept and can possibly work over any Virtual network
layer and corresponding underlay network. The underlay network can be IP or
alternatively any Layer 2 technology.

At the service layer, SFs are identified using a path identifier
and an index. Eventually, this index is translated to an IP address (or MAC
address) of the host where the SF is running. Because of this,
any change-of-service function instance is likely to require a change of the
path information since either the IP address (in the case of changing the
execution from one data center to another) or MAC address will change due to
the newly selected SF instance.

 Returning to our 5G control-plane example, a user's connection request to
 access an application server in the Internet may start with signaling in the
 control plane to set up user-plane bearers. The connection request may flow
 through SFs over a service chain in the control plane, as
 deployed by a network operator. Typical SFs in a 5G control plane may include
 "RAN termination / processing", "Slice Selection Function", "AMF", and
 "SMF". A "Network Slice" is a complete logical network including Radio Access
 Network (RAN) and Core Network (CN). Distinct RAN and CN Slices may exist. A
 device may access multiple Network Slices simultaneously through a single
 RAN. The device may provide Network Slice Selection Assistance Information
 (NSSAI) parameters to the network to help it select a RAN and a Core Network
 part of a slice instance.

Part of the control plane, the Common Control Network Function (CCNF),
includes the Network Slice Selection Function (NSSF), which is in charge of
selecting core Network Slice instances.

The classifier, as described in SFC architecture, may reside in the user
terminal or at the Evolved Node B (eNB). These SFs can be
configured to be part of an SFC. We can also say that some
of the configurations of the SFP may change at the execution
time. For example, the SMF may be relocated as the user moves and a new SMF
may be included in the SFP based on user location. shows the example SFC described here.

 Mapping SFC onto Service Function Execution Points along a Service Function Path
 +------+ +---------+ +-----+ +-----+
| User | | Slice | | | | |
| App |-->| Control |->| AMF |-->| SMF |-->
| Fn | | Function| | | | |
+------+ +---------+ +-----+ +-----+

 Background
 describes an architecture
	 for the specification, creation, and ongoing maintenance of SFCs.
	 It includes architectural concepts, principles, and components used
	 in the construction of composite services through deployment of
	 SFCs. In the following, we outline the parts of this SFC
	 architecture relevant for our proposed extension, followed by the
	 challenges with this current framework in the light of our example
	 use case.

 Relevant Part of SFC Architecture

		 The SFC architecture, as defined in , describes architectural components such
		 as SF, classifier, and SFF. It describes the SFP as the
		 logical path of an SFC. Forwarding traffic along such an SFP
		 is the responsibility of the SFF. For this, the SFFs in a
		 network maintain the requisite SFP forwarding information.
		 Such SFP forwarding information is associated with a service
		 path identifier (SPI) that is used to uniquely identify an
		 SFP. The service forwarding state is represented by the
		 Service Index (SI) and enables an SFF to identify which SFs
		 of a given SFP should be applied, and in what order. The SFF
		 also has information that allows it to forward packets to
		 the next SFF after applying local SFs.

		 The operational steps to forward traffic are then as follows:
		 Traffic arrives at an SFF from the network. The SFF
		 determines the appropriate SF the traffic should be forwarded
		 to via information contained in the SFC encapsulation. After
		 SF processing, the traffic is returned to the SFF and, if
		 needed, is forwarded to another SF associated with that SFF.
		 If there is another non-local hop (i.e., to an SF with a
		 different SFF) in the SFP, the SFF further encapsulates the
		 traffic in the appropriate network transport protocol and
		 delivers it to the network for delivery to the next SFF along
		 the path. Related to this forwarding responsibility, an SFF
		 should be able to interact with metadata.

 Challenges with Current Framework

	 As outlined in previous sections, the SFP defines
	 an ordered sequence of specific SF instances being
	 used for the interaction between initiator and SFs
	 along the SFP. These SFs are addressed by IP (or any
	 L2/MAC) addresses and defined as next-hop information in the
	 network locator maps of traversing SFF nodes.

 As outlined in our use case, however, the service provider may want to
 provision SFC nodes based on dynamically spun-up SF
 instances so that these (now virtualized) SFs can be
 reached in the SFC domain using the SFC underlay layer.

 Following the original model of SFC, any change in a specific execution
 point for a specific SF along the SFP will require a
 change of the SFP information (since the new SF execution
 point likely carries different IP or L2 address information) and
 possibly even the next-hop information in SFFs along the SFP. In case
 the availability of new SF instances is rather dynamic
 (e.g., through the use of container-based virtualization techniques),
 the current model and realization of SFC could lead to reducing the
 flexibility of service providers and increasing the management
 complexity incurred by the frequent changes of (service) forwarding
 information in the respective SFF nodes. This is because any change of
 the SFP (and possibly next-hop info) will need to go through suitable
 management cycles.

	 To address these challenges through a suitable solution, we identify the following requirements:

			 Relations between Service Execution Points MUST be
			 abstracted so that, from an SFP point of view, the
			 Logical Path never changes.
		

			 Deriving the Service Execution Points from the
			 abstract SFP SHOULD be fast and incur minimum delay.
		

			 Identification of the Service Execution Points
			 SHOULD NOT use a combination of Layer 2 or Layer 3
			 mechanisms.
		

 The next section outlines a solution to address the issue, allowing for
 keeping SFC information (represented in its SFP) intact while
 addressing the desired flexibility of the service provider.

 Name-Based Operation in SFF

 General Idea

	 The general idea is two pronged. Firstly, we elevate the definition
	 of an SFP onto the level of "name-based
	 interactions" rather than limiting SFPs to Layer 2 or Layer 3 information
	 only. Secondly, we extend the operations of the SFF to allow for
	 forwarding decisions that take into account such name-based
	 interaction while remaining backward compatible to the current SFC
	 architecture as defined in . In the following sections, we outline these two
	 components of our solution.

	 If the next-hop information in the Network Locator Map (NLM) is
	 described using an L2/L3 identifier, the name-based SFF (nSFF) may
	 operate as described for (traditional) SFF, as defined in . On the other hand, if the
	 next-hop information in the NLM is described as a name, then the
	 nSFF operates as described in the following sections.

	 In the following sections, we outline the two components of our solution.

 Name-Based Service Function Path (nSFP)

		The existing SFC framework is defined in . outlines that the SFP information is
		representing path information based on Layer 2 or Layer 3
		information, i.e., MAC or IP addresses, causing the
		aforementioned frequent adaptations in cases of
		execution-point changes. Instead, we introduce the notion of a
		"name-based Service Function Path (nSFP)".

 In today's networking terms, any identifier can be treated as a name,
 but we will illustrate the realization of a "Name-based SFP" through
 extended SFF operations (see) based on URIs as names and
 HTTP as the protocol of exchanging information. Here, URIs are being
 used to name for an SF along the nSFP. Note
 that the nSFP approach is not restricted to HTTP (as the
 protocol) and URIs (as next-hop identifier within the SFP). Other
 identifiers such as an IP address itself can also be used and are
 interpreted as a "name" in the nSFP. IP addresses as well as fully
 qualified domain names forming complex URIs (uniform resource
 identifiers), such as www.example.com/service_name1, are all captured
 by the notion of "name" in this document.
		

 Generally, nSFPs are defined as an ordered sequence of the "name" of
 SFs, and a typical nSFP may look like: 192.0.x.x -> www.example.com
 -> www.example2.com/service1 -> www.example2.com/service2.

 Our use case in can then be
 represented as an ordered named sequence. An example for a session
 initiation that involves an authentication procedure, this could look
 like 192.0.x.x -> smf.example.org/session_initiate ->
 amf.example.org/auth -> smf.example.org/session_complete ->
 192.0.x.x. (Note that this example is only a conceptual one since the
 exact nature of any future SBA-based exchange of 5G control-plane
 functions is yet to be defined by standardization bodies such as
 3GPP).

 In accordance with our use case in , any of these named
 services can potentially be realized through more than one replicated
 SF instance. This leads to making dynamic decisions on where to send
 packets along the SAME SFP information, being
 provided during the execution of the SFC. Through elevating the SFP
 onto the notion of name-based interactions, the SFP will remain the
 same even if those specific execution points change for a specific
 service interaction.

 The following diagram in describes this nSFP
 concept and the resulting mapping of those named interactions onto
 (possibly) replicated instances.

 Mapping SFC onto Service Function Execution Points along a Service Function Path Based on Virtualized Service Function Instance
 +---+
 |Service Layer |
 | 192.0.x.x --> www.example.com --> www.example2.com --> |
 | || || |
 +----------------------||--------------||-----------------------+
 || ||
 || ||
 +----------------------||--------------||-----------------------+
 |Underlay Network \/ \/ |
 | +--+ +--+ +--+ +--+ +--+ +--+ |
 | | | | | | | | | | | | | |
 | +--+ +--+ +--+ +--+ +--+ +--+ |
 | Compute and Compute and |
 | storage nodes storage nodes |
 +---+

 Name-Based Network Locator Map (nNLM)

 In order to forward a packet within an nSFP, we need to
 extend the NLM as defined in
 with the ability to consider name relations based on URIs as well as
 high-level transport protocols such as HTTP for means of SFC packet
 forwarding. Another example for SFC packet forwarding could be that of
 Constrained Application Protocol (CoAP).

 The extended NLM or name-based Network Locator Map
 (nNLM) is shown in as an example for www.example.com being
 part of the nSFP. Such extended nNLM is stored at each SFF throughout
 the SFC domain with suitable information populated to the nNLM during
 the configuration phase.

 Name-Based Network Locator Map

 SPI
 SI
 Next Hop(s)
 Transport Encapsulation (TE)

 10
 255
 192.0.2.1
 VXLAN-gpe

 10
 254
 198.51.100.10
 GRE

 10
 253
 www.example.com
 HTTP

 40
 251
 198.51.100.15
 GRE

 50
 200
 01:23:45:67:89:ab
 Ethernet

 15
 212
 Null (end of path)
 None

	 Alternatively, the extended NLM may be defined with implicit name
	 information rather than explicit URIs as in . In the example of , the next hop is represented
	 as a generic HTTP service without a specific URI being identified
	 in the extended NLM. In this scenario, the SFF
	 forwards the packet based on parsing the HTTP request in order to
	 identify the host name or URI. It retrieves the URI and may apply
	 policy information to determine the destination host/service.

 Name-Based Network Locator Map with Implicit Name Information

 SPI
 SI
 Next Hop(s)
 Transport Encapsulation (TE)

 10
 255
 192.0.2.1
 VXLAN-gpe

 10
 254
 198.51.100.10
 GRE

 10
 253
 HTTP Service
 HTTP

 40
 251
 198.51.100.15
 GRE

 50
 200
 01:23:45:67:89:ab
 Ethernet

 15
 212
 Null (end of path)
 None

 Name-Based Service Function Forwarder (nSFF)

	 It is desirable to extend the SFF of the SFC underlay to handle
	 nSFPs transparently and without the need to insert any SF into
	 the nSFP. Such extended nSFFs would then be responsible
	 for forwarding a packet in the SFC domain as per the definition
	 of the (extended) nSFP.

 	
 In our example realization for an extended SFF, the solution
 described in this document uses HTTP as the protocol of forwarding SFC
 packets to the next (name-based) hop in the nSFP.

	The URI in the HTTP transaction is the name in our nSFP information,
	which will be used for name-based forwarding.

 Following our reasoning so far, HTTP requests (and more specifically,
 the plaintext-encoded requests above) are the equivalent of packets
 that enter the SFC domain. In the existing SFC framework, an
 IP payload is typically assumed to be a packet entering the SFC domain. This
 packet is forwarded to destination nodes using the L2
 encapsulation. Any layer 2 network can be used as an underlay
 network. This notion is now extended to packets being possibly part of
 an entire higher-layer application such as HTTP requests. The handling
 of any intermediate layers, such as TCP and IP, is left to the realization
 of the (extended) SFF operations towards the next (named) hop. For
 this, we will first outline the general lifecycle of an SFC packet in
 the following subsection, followed by two examples for determining
 next-hop information in , finished up by a layered view on
 the realization of the nSFF in .

 High-Level Architecture

 High-Level Architecture

+----------+
| SF1 | +--------+ +------+
| instance |\ | NR | | SF2 |
+----------+ \ +--------+ +------+
 \ || ||
+------------+ \ +-------+ +---------+ +---------+ +-------+
| Classifier |---| nSFF1 |---|Forwarder|---|Forwarder|---| nSFF2 |
+------------+ +-------+ +---------+ +---------+ +-------+
 ||
 +----------+
 | Boundary |
 | node |
 +----------+

	 The high-level architecture for name-based operation shown in
	 is very similar to the
	 SFC architecture as described in . Two new functions are introduced, as shown in
	 the above diagram: namely, the nSFF and the Name Resolver (NR).

		The nSFF is an extension of the existing SFF and is capable of
		processing SFC packets based on nNLM information, determining
		the next SF where the packet should be forwarded, and the
		required transport encapsulation (TE). Like standard SFF operation,
		it adds TE to the SFC packet and forwards
		it.

		The NR is a new functional component, capable of
		identifying the execution endpoints, where a "named SF" is
		running, triggered by suitable resolution requests sent by the
		nSFF. Though this is similar to DNS function, it is not
		same. It does not use DNS protocols or data records. A new
		procedure to determine the suitable routing/forwarding
		information towards the nSFF serving the next
		hop of the SFP is used. The details are
		described later.

 The other functional components, such as classifier and SF, are the same as
 described in SFC architecture, as defined in , while the Forwarders shown in the above diagram are traditional
 Layer 2 switches.

 Operational Steps

		 In the proposed solution, the operations are realized by the
		 name-based SFF, called "nSFF". We utilize the high-level
		 architecture in
		 to describe the traversal between two SF
		 instances of an nSFP-based transaction in an example chain
		 of: 192.0.x.x -> SF1 (www.example.com) -> SF2
		 (www.example2.com) -> SF3 -> ...

 Service Function 3 (SF3) is assumed to be a classical SF;
hence, existing SFC mechanisms can be used to reach it and will not be
considered in this example.

 According to the SFC lifecycle, as defined in , based on our example chain above, the traffic
 originates from a classifier or another SFF on the left. The traffic
 is processed by the incoming nSFF1 (on the left side) through the
 following steps. The traffic exits at nSFF2.

		 At nSFF1, the following nNLM is assumed:

 nNLM at nSFF1

 SPI
 SI
 Next Hop(s)
 Transport Encapsulation (TE)

 10
 255
 192.0.2.1
 VXLAN-gpe

 10
 254
 198.51.100.10
 GRE

 10
 253
 www.example.com
 HTTP

 10
 252
 www.example2.com
 HTTP

 40
 251
 198.51.100.15
 GRE

 50
 200
 01:23:45:67:89:ab
 Ethernet

 15
 212
 Null (end of path)
 None

 nSFF1 removes the previous transport
		 encapsulation (TE) for any traffic originating from another
		 SFF or classifier (traffic from an SF instance does not
		 carry any TE and is therefore directly processed at the
		 nSFF).
		

		 nSFF1 then processes the Network Service Header (NSH)
		 information, as defined in , to identify the next SF at the nSFP
		 level by mapping the NSH information to the appropriate
		 entry in its nNLM (see) based on the provided SPI/SI
		 information in the NSH (see) in order to determine the name-based
		 identifier of the next-hop SF. With such nNLM in mind, the
		 nSFF searches the map for SPI = 10 and SI = 253. It
		 identifies the next hop as = www.example.com and HTTP as
		 the protocol to be used. Given that the next hop resides
		 locally, the SFC packet is forwarded to the SF1 instance
		 of www.example.com. Note that the next hop could also be
		 identified from the provided HTTP request, if the next-hop
		 information was identified as a generic HTTP service, as
		 defined in .

 The SF1 instance then processes the received SFC packet
 according to its service semantics and modifies the NSH by
 setting SPI = 10 and SI = 252 for forwarding the packet along the
 SFP. It then forwards the SFC packet to its local nSFF, i.e.,
 nSFF1.
		
 nSFF1 processes the NSH of the SFC packet again,
		 now with the NSH modified (SPI = 10, SI = 252) by the SF1
		 instance. It retrieves the next-hop information from its
		 nNLM in to be www.example2.com. Due to this SF
		 not being locally available, the nSFF consults any locally
		 available information regarding routing/forwarding towards
		 a suitable nSFF that can serve this next hop.
		
 If such information exists, the Packet (plus the
 NSH information) is marked to be sent towards the nSFF serving the
 next hop based on such information in Step 8.
 If such information does not exist, nSFF1
 consults the NR to determine the suitable routing/forwarding
 information towards the identified nSFF serving the next hop of the
 SFP. For future SFC packets towards this next hop, such resolved
 information may be locally cached, avoiding contacting the NR for
 every SFC packet forwarding. The packet is now marked to be sent via
 the network in Step 8.
		
 Utilizing the forwarding information
	 determined in Steps 6 or 7, nSFF1 adds the suitable TE for
 the SFC packet before forwarding via the forwarders in the network
 towards the next nSFF22.

 When the Packet (+NSH+TE) arrives at the outgoing nSFF2, i.e., the
 nSFF serving the identified next hop of the SFP, it removes the TE
 and processes the NSH to identify the next-hop information. At
 nSFF2 the nNLM in is
 assumed. Based on this nNLM and NSH information where SPI = 10 and
 SI = 252, nSFF2 identifies the next SF as www.example2.com.

 nNLM at SFF2

 SPI
 SI
 Next Hop(s)
 Transport Encapsulation (TE)

 10
 252
 www.example2.com
 HTTP

 40
 251
 198.51.100.15
 GRE

 50
 200
 01:23:45:67:89:ab
 Ethernet

 15
 212
 Null (end of path)
 None

 If the next hop is locally registered at the
		 nSFF, it forwards the packet (+NSH) to the SF
		 instance using suitable IP/MAC methods for doing so.
 If the next hop is not locally registered at the nSFF,
 the outgoing nSFF adds new TE information to the packet and
 forwards the packet (+NSH+TE) to the next SFF or boundary node, as
 shown in .

 nSFF Forwarding Operations

		 This section outlines the realization of various nSFF
		 forwarding operations in . Although the
		 operations in utilize the notion of
		 name-based transactions in general, we exemplify the
		 operations here in specifically for
		 HTTP-based transactions to ground our description into a
		 specific protocol for such name-based transaction. We will
		 refer to the various steps in each of the following
		 subsections.

 nSFF Protocol Layers
 shows the protocol layers based
 on the high-level architecture in .

 Protocol Layers
 +-------+ +------+----+ +----+-----+
|App | | | | +--------+ | | |
|HTTP | |--------> | | NR | |nSFF----->|--
|TCP |->| TCP |nSFF| +---/\---+ | | TCP | |
|IP | | IP | | || | | IP | |
+-------+ +------+----+ +---------+ +---------+ +----------+ |
| L2 | | L2 |->|Forwarder|-->|Forwarder|-->| L2 | |
+-------+ +------+----+ +---------+ +---------+ +----------+ |
 SF1 nSFF1 nSFF2 |
 +-------+ |
 | App |/ |
 | HTTP | -----------+
 | TCP |\
 | IP |
 | L2 |
 +-------+
 SF2

	 The nSFF component here is shown as implementing a full
	 incoming/outgoing TCP/IP protocol stack towards the local SFs,
	 while implementing the nSFF-NR and nSFF-nSFF protocols based on
	 the descriptions in .

		 For the exchange of HTTP-based SF transactions,
		 the nSFF terminates incoming TCP connections as well as
		 outgoing TCP connections to local SFs, e.g., the TCP
		 connection from SF1 terminates at nSFF1, and nSFF1 may store
		 the connection information such as socket information. It
		 also maintains the mapping information for the HTTP request
		 such as originating SF, destination SF, and socket ID. nSFF1
		 may implement sending keep-alive messages over the socket to
		 maintain the connection to SF1. Upon arrival of an HTTP
		 request from SF1, nSFF1 extracts the HTTP Request and
		 forwards it towards the next node as outlined in . Any returning response is mapped onto the suitable open
		 socket (for the original request) and sent towards SF1.

	 At the outgoing nSFF2, the destination SF2/Host is identified
	 from the HTTP request message. If no TCP connection exists to the
	 SF2, a new TCP connection is opened towards the destination SF2
	 and the HTTP request is sent over said TCP connection. The nSFF2
	 may also save the TCP connection information (such as socket
	 information) and maintain the mapping of the socket information
	 to the destination SF2. When an HTTP response is received from
	 SF2 over the TCP connection, nSFF2 extracts the HTTP response,
	 which is forwarded to the next node. nSFF2 may maintain the TCP
	 connection through keep-alive messages.
	

 nSFF Operations

 In this section, we present three key aspects of operations for the
 realization of the steps in , namely, (i) the registration
 of local SFs (for Step 3 in), (ii) the forwarding of SFC
 packets to and from local SFs (for Steps 3, 4, and 10 in
), (iii) the
	 forwarding to a remote SF (for Steps 5, 6, and 7 in) and to the NR as well as (iv) for the lookup
 of a suitable remote SF (for Step 7 in). We also cover
 aspects of maintaining local lookup information for reducing lookup
 latency and other issues.

 Forwarding between nSFFs and nSFF-NRs

 Forwarding between the distributed nSFFs as well as between nSFFs and
 NRs is realized over the operator network via a path-based
 approach. A path-based approach utilizes path information provided
 by the source of the packet for forwarding said packet in the
 network. This is similar to segment routing albeit differing in the
 type of information provided for such source-based forwarding as
 described in this section. In this approach, the forwarding
 information to a remote nSFF or the NR is defined as a "path
 identifier" (pathID) of a defined length where said length field
 indicates the full pathID length. The payload of the packet is
 defined by the various operations outlined in the following
 subsections, resulting in an overall packet being transmitted. With
 this, the generic forwarding format (GFF) for transport over the
 operator network is defined in with the length field
 defining the length of the pathID provided.

 Generic Forwarding Format (GFF)

+---------+-----------------+------------------------//------------+
		//
Length	Path ID	Payload //
(12 bits)		//
+---------+-----------------+--------------------//----------------+

 Length (12 bits): Defines the length of the pathID, i.e., up to 4096 bits

		 Path ID: Variable-length bit field derived from
		 IPv6 source and destination address
		

		 For the pathID information, solutions such as those in can be used. Here, the
		 IPv6 source and destination addresses are used to realize a
		 so-called path-based forwarding from the incoming to the
		 outgoing nSFF or the NR. The forwarders in are realized via SDN
		 (software-defined networking) switches, implementing an
		 AND/CMP operation based on arbitrary wildcard matching over
		 the IPv6 source and destination addresses as outlined in
		 . Note that in the
		 case of using IPv6 address information for path-based
		 forwarding, the step of removing the TE
		 at the outgoing nSFF in is realized by utilizing the provided
		 (existing) IP header (which was used for the purpose of the
		 path-based forwarding in) for the purpose of next-hop forwarding
		 such as that of IP-based routing. As described in Step 8 of the extended
		 nSFF operations, this forwarding information is used as
		 traffic encapsulation. With the forwarding information
		 utilizing existing IPv6 information, IP headers are utilized
		 as TE in this case.

		 The next-hop nSFF (see) will restore the IP header of the packet
		 with the relevant IP information used to forward the SFC
		 packet to SF2, or it will create suitable TE information to
		 forward the information to another nSFF or boundary
		 node. Forwarding operations at the intermediary forwarders,
		 i.e., SDN switches, examine the pathID information through a
		 flow-matching rule in which a specific switch-local output
		 port is represented through the specific assigned bit
		 position in the pathID. Upon a positive match in said rule,
		 the packet is forwarded on said output port.

		 Alternatively, the solution in suggests using a so-called BIER
		 (Binary Indexed Explicit Replication) underlay. Here, the
		 nSFF would be realized at the ingress to the BIER underlay,
		 injecting the SFC packet header (plus the Network Service
		 Header (NSH)) with BIER-based traffic encapsulation into the
		 BIER underlay with each of the forwarders in being realized as a so-called
		 Bit-Forwarding Router (BFR) .

 Transport Protocol Considerations

		 Given that the proposed solution operates at the
		 "named-transaction" level, particularly for HTTP
		 transactions, forwarding between nSFFs and/or NRs
		 SHOULD be implemented via a transport
		 protocol between nSFFs and/or NRs in order to provide
		 reliability, segmentation of large GFF packets, and flow
		 control, with the GFF in being the basic forwarding format for
		 this.

		 Note that the nSFFs act as TCP proxies at ingress and
		 egress, thus terminating incoming and initiating outgoing
		 HTTP sessions to SFs.

 shows the packet format being
		 used for the transmission of data, being adapted from the
		 TCP header. Segmentation of large transactions into single
		 transport protocol packets is realized through maintaining a
		 "Sequence number". A "Checksum" is calculated over a single
		 data packet with the ones-complement TCP checksum
		 calculation being used. The "Window Size" field indicates
		 the current maximum number of transport packets that are
		 allowed in-flight by the egress nSFF. A data packet is sent
		 without a "Data" field to indicate the end of the (e.g., HTTP)
		 transaction.

 Note that, in order to support future named transactions based on
 other application protocols, such as Constrained Application
 Protocol (CoAP), future versions of the transport protocol
 MAY introduce a "Type" field that indicates the type
 of application protocol being used between SF and nSFF with "Type"
 0x01 proposed for HTTP. This is being left for future study.

 Transport Protocol Data Packet Format

 +--+
 | 16 bits | 16 bits |
 +--+
 | Sequence number |
 +--+
 | Checksum | Window Size |
 +--+
 | ... |
 | Data (Optional) |
 +--+

		 Given the path-based forwarding being used between nSFFs,
		 the transport protocol between nSFFs utilizes negative
		 acknowledgements from the egress nSFF towards the ingress
		 nSFF. The transport protocol negative Acknowledgment
		 (NACK) packet carries the number
		 of NACKs as well as the specific sequence numbers being
		 indicated as lost in the "NACK number" field(s) as shown in
		 .

 Transport Protocol NACK Packet Format

 +-----------------------+----------------------+
 | 16 bits | 16 bits |
 +--+
 | Number of NACKs | +
 +--+
 | NACK number |
 +--+
 + ... NACK number +
 +--+

 If the indicated number of NACKs in a received NACK packet is
 nonzero, the ingress nSFF will retransmit all sequence numbers
 signaled in the packet while decreasing its congestion window size
 for future transmissions.

 If the indicated number of NACKs in a received NACK packet is zero, it
 will indicate the current congestion window as being successfully (and
 completely) being transmitted, increasing the congestion window size
 if smaller than the advertised "Window Size" in .

 The maintenance of the congestion window is subject to realization at
 the ingress nSFF and left for further study in nSFF realizations.

 SF Registration

		 As outlined in Steps 3 and 10 of ,
		 the nSFF needs to determine if the SF derived from the
		 Name-Based Network Locator (nNLM) is locally reachable or
		 whether the packet needs to be forwarded to a remote SFF. For
		 this, a registration mechanism is provided for such local
		 SF with the local nSFF. Two mechanisms can be used for
		 this:

 SF-initiated: We assume that the SF registers its Fully Qualified
 Domain Name (FQDN) to the local nSFF. As local mechanisms, we
 foresee that either a Representational State Transfer (REST-based) interface over the link-local
 link or configuration of the nSFF (through configuration files or
 management consoles) can be utilized. Such local registration
 events lead to the nSFF registering the given FQDN with the NR in
 combination with a system-unique nSFF identifier that is being
 used for path-computation purposes in the NR. For the
 registration, the packet format in is used (inserted as the payload in the GFF of
 with the pathID
 towards the NR).

 Registration Packet Format
 +---------+------------------+----------------+
R/D	hash(FQDN)	nSFF_ID
(1 bit)	(16 bits)	(8 bits)
+---------+------------------+----------------+

 R/D: 1-bit length (0 for Register, 1 for Deregister)

	 hash(FQDN): 16-bit length for a hash over the FQDN of the SF
		

	 nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF
	

We assume that the pathID towards the NR is known to the nSFF through configuration means.

The NR maintains an internal table that associates the hash(FQDN), the nSFF_id
information, as well as the pathID information being used for communication
between nSFFs and NRs. The nSFF locally maintains a mapping of registered FQDNs
to IP addresses for the latter using link-local private IP addresses.

		 Orchestration-based: In this mechanism, we assume that SFC
		 to be orchestrated and the chain to be provided through an
		 orchestration template with FQDN information associated to
		 a compute/storage resource that is being deployed by the
		 orchestrator. We also assume knowledge at the orchestrator
		 of the resource topology. Based on this, the orchestrator
		 can now use the same REST-based protocol defined in option
		 1 to instruct the NR to register the given FQDN, as
		 provided in the template, at the nSFF it has identified as
		 being the locally servicing nSFF, provided as the
		 system-unique nSFF identifier.
		

 Local SF Forwarding

		 There are two cases of local SF forwarding, namely, the SF
		 sending an SFC packet to the local nSFF (incoming requests)
		 or the nSFF sending a packet to the SF (outgoing requests)
		 as part of Steps 3 and 10 in . In the following,
		 we outline the operation for HTTP as an example-named
		 transaction.

 As shown in , incoming HTTP requests from SFs are
 extracted by terminating the incoming TCP connection at their
 local nSFFs at the TCP level. The nSFF MUST maintain a mapping of
 open TCP sockets to HTTP requests (utilizing the URI of the
 request) for HTTP response association.

		 For outgoing HTTP requests, the nSFF utilizes the
		 maintained mapping of locally registered FQDNs to
		 link-local IP addresses (see , option
		 1). Hence, upon receiving an SFC packet from a remote nSFF
		 (in Step 9 of), the nSFF determines the local
		 existence of the SF through the registration mechanisms in
		 . If said SF does exist locally, the HTTP
		 (+NSH) packet, after stripping the TE, is sent to the
		 local SF as Step 10 in via a TCP-level
		 connection. Outgoing nSFFs SHOULD keep TCP connections open
		 to local SFs for improving SFC packet delivery in
		 subsequent transactions.

 Handling of HTTP Responses

		 When executing Steps 3 and 10 in , the SFC packet
		 will be delivered to the locally registered next hop. As
		 part of the HTTP protocol, responses to the HTTP request
		 will need to be delivered on the return path to the
		 originating nSFF (i.e., the previous hop). For this, the
		 nSFF maintains a list of link-local connection information,
		 e.g., sockets to the local SF and the pathID on which the
		 request was received. Once receiving the response, nSFF
		 consults the table to determine the pathID of the original
		 request, forming a suitable GFF-based packet to be returned
		 to the previous nSFF.

 When receiving the HTTP response at the previous nSFF, the nSFF
 consults the table of (locally) open sockets to determine the
 suitable local SF connection, mapping the received HTTP response
 URI to the stored request URI. Utilizing the found socket, the
 HTTP response is forwarded to the locally registered SF.

 Remote SF Forwarding

		 In Steps 5, 6, 7, and 8 of , an SFC
		 packet is forwarded to a remote nSFF based on the nNLM
		 information for the next hop of the nSFP. handles the case of suitable
		 forwarding information to the remote nSFF not existing,
		 therefore consulting the NR to obtain suitable information.
		 describes the maintenance
		 of forwarding information at the local nSFF. describes the update of stale forwarding
		 information. Note that the forwarding described in is used for the actual forwarding to the
		 various nSFF components. Ultimately,
		 describes the forwarding to the remote nSFF via the
		 forwarder network.

 Remote SF Discovery

		 The nSFF communicates with the NR for two purposes: namely,
		 the registration and discovery of FQDNs. The packet format
		 for the former was shown in in
		 ,
		 while outlines the packet format for the
		 discovery request.

 Discovery Packet Format

+--------------+-------------+ +--------+-----------------//--------+
				//
hash(FQDN)	nSFF_ID		Length	pathID //
(16 bits)	(8 bits)		(4 bits)	//
+--------------+-------------+ +--------+-------------//------------+
 Path Request Path Response

 For Path Request:

 hash(FQDN): 16-bit length for a hash over the FQDN of the SF

	 nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF
		

 For Path Response:

 Length: 4-bit length that defines the length of the pathID

	 Path ID: Variable-length bit field derived from IPv6 source
	 and destination address
		

 A path to a specific FQDN is requested by sending a hash of the
 FQDN to the NR together with its nSFF_id, receiving as a response a
 pathID with a length identifier. The NR SHOULD maintain a table of
 discovery requests that map discovered (hash of) FQDN to the
 nSFF_id that requested it and the pathID that is being calculated
 as a result of the discovery request.

 The discovery request for an FQDN that has not previously been
 served at the nSFF (or for an FQDN whose pathID information has
 been flushed as a result of the update operations in) results in an initial latency
 incurred by this discovery through the NR, while any SFC packet
 sent over the same SFP in a subsequent transaction will utilize
 the nSFF-local mapping table. Such initial latency can be avoided
 by prepopulating the FQDN-pathID mapping proactively as part of
 the overall orchestration procedure, e.g., alongside the
 distribution of the nNLM information to the nSFF.

 Maintaining Forwarding Information at Local nSFF

		 Each nSFF MUST maintain an internal table
		 that maps the (hash of the) FQDN information to a suitable
		 pathID. As outlined in Step 7 of , if a suitable entry does not exist for
		 a given FQDN, the pathID information is requested with the
		 operations in
		 and the suitable entry is locally created upon receiving a
		 reply with the forwarding operation being executed as
		 described in .

 If such an entry does exist (i.e., Step 6 of), the pathID
 is locally retrieved and used for the forwarding operation in
 .

 Updating Forwarding Information at nSFF

	 The forwarding information maintained at each nSFF (see
) might need to be updated for three reasons:

			 An existing SF is no longer reachable: In this case,
			 the nSFF with which the SF is locally registered
			 deregisters the SF explicitly at the NR by sending
			 the packet in with the hashed FQDN and the R/D
			 bit set to 1 (for deregister).
		

			 Another SF instance has become reachable in the
			 network (and, therefore, might provide a better
			 alternative to the existing SF): In this case, the NR
			 has received another packet with a format defined in
			 but a different nSFF_id value.
		

			 Links along paths might no longer be reachable: The
			 NR might use a suitable southbound interface to
			 transport networks to detect link failures, which it
			 associates to the appropriate pathID bit position.
		

 For this purpose, the packet format in is sent from the
 NR to all affected nSFFs, using the generic format in .

 Path Update Format

+---------+-----------------+--------------//----+
		//
Type	#IDs	IDs //
(1 bit)	(8 bits)	//
+---------+-----------------+----------//--------+

 Type: 1-bit length (0 for Nsff ID, 1 for Link ID)

		 #IDs: 8-bit length for number of IDs in the list
		

			 IDs: List of IDs (Nsff ID or Link ID)
			

			The pathID to the affected nSFFs is computed as the
			binary OR over all pathIDs to those nSFF_ids affected
			where the pathID information to the affected nSFF_id
			values is determined from the NR-local table
			maintained in the registration/deregistration
			operation of .

 The pathID may include the type of information being updated
 (e.g., node identifiers of leaf nodes or link identifiers for
 removed links). The node identifier itself may be a special
 identifier to signal "ALL NODES" as being affected. The node
 identifier may signal changes to the network that are substantial
 (e.g., parallel link failures). The node identifier may trigger
 (e.g., recommend) purging of the entire path table (e.g., rather
 than the selective removal of a few nodes only).

 It will include the information according to the type. The
 included information may also be related to the type and length
 information for the number of identifiers being provided.

 In cases 1 and 2, the Type bit is set to 1 (type nSFF_id) and the
 affected nSFFs are determined by those nSFFs that have previously
 sent SF discovery requests, utilizing the optional table mapping
 previously registered FQDNs to nSFF_id values. If no table mapping
 the (hash of) FQDN to nSFF_id is maintained, the update is sent to
 all nSFFs. Upon receiving the path update at the affected nSFF,
 all appropriate nSFF-local mapping entries to pathIDs for the
 hash(FQDN) identifiers provided will be removed, leading to a new
 NR discovery request at the next remote nSFF forwarding to the
 appropriate FQDN.

 In case 3, the Type bit is set to 0 (type linkID) and the affected
 nSFFs are determined by those nSFFs whose discovery requests have
 previously resulted in pathIDs that include the affected link,
 utilizing the optional table mapping previously registered FQDNs
 to pathID values (see). Upon receiving the node
 identifier information in the path update, the affected nSFF will
 check its internal table that maps FQDNs to pathIDs to determine
 those pathIDs affected by the link problems and remove path
 information that includes the received node identifier(s). For
 this, the pathID entries of said table are checked against the
 linkID values provided in the ID entry of the path update through
 a binary AND/CMP operation to check the inclusion of the link in
 the pathIDs to the FQDNs. If any pathID is affected, the
 FQDN-pathID entry is removed, leading to a new NR discovery
 request at the next remote nSFF forwarding to the appropriate
 FQDN.

 Forwarding to Remote nSFF

		 Once Steps 5, 6, and 7 in are being executed,
		 Step 8 finally sends the SFC packet to the remote nSFF,
		 utilizing the pathID returned in the discovery request
		 () or retrieved from the local pathID
		 mapping table. The SFC packet is placed in the payload of
		 the generic forwarding format in together with
		 the pathID, and the nSFF eventually executes the forwarding
		 operations in .

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 Sections and describe the forwarding of SFC
 packets between named SFs based on URIs exchanged in HTTP messages.
 Security is needed to protect the communications between originating
 node and Ssff, between one Nsff and the next Nsff, and between Nsff and
 destination. TLS is sufficient for this and SHOULD be used. The TLS
 handshake allows to determine the FQDN, which, in turn, is enough for the
 service routing decision. Supporting TLS also allows the possibility of
 HTTPS-based transactions.
 It should be noted (per) that what a URI resolves to is not
necessarily stable. This can allow flexibility in deployment, as described in
this document, but may also result in unexpected behavior and could provide an
attack vector as the resolution of a URI could be "hijacked" resulting in
packets being steered to the wrong place. This could be particularly
important if the SFC is intended to send packets for processing at security
functions. Such hijacking is a new attack surface introduced by using a
separate NR.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Service Function Chaining (SFC) Architecture

 This document describes an architecture for the specification, creation, and ongoing maintenance of Service Function Chains (SFCs) in a network. It includes architectural concepts, principles, and components used in the construction of composite services through deployment of SFCs, with a focus on those to be standardized in the IETF. This document does not propose solutions, protocols, or extensions to existing protocols.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Multicast Using Bit Index Explicit Replication (BIER)

 This document specifies a new architecture for the forwarding of multicast data packets. It provides optimal forwarding of multicast packets through a "multicast domain". However, it does not require a protocol for explicitly building multicast distribution trees, nor does it require intermediate nodes to maintain any per-flow state. This architecture is known as "Bit Index Explicit Replication" (BIER). When a multicast data packet enters the domain, the ingress router determines the set of egress routers to which the packet needs to be sent. The ingress router then encapsulates the packet in a BIER header. The BIER header contains a bit string in which each bit represents exactly one egress router in the domain; to forward the packet to a given set of egress routers, the bits corresponding to those routers are set in the BIER header. The procedures for forwarding a packet based on its BIER header are specified in this document. Elimination of the per-flow state and the explicit tree-building protocols results in a considerable simplification.

 Network Service Header (NSH)

 This document describes a Network Service Header (NSH) imposed on packets or frames to realize Service Function Paths (SFPs). The NSH also provides a mechanism for metadata exchange along the instantiated service paths. The NSH is the Service Function Chaining (SFC) encapsulation required to support the SFC architecture (defined in RFC 7665).

 Informative References

 Applicability of BIER Multicast Overlay for Adaptive Streaming Services

 HTTP Level multicast, using BIER, is described as a use case in the BIER Use cases document. HTTP Level Multicast is used in today's video streaming and delivery services such as HLS, AR/VR etc., generally realized over IP Multicast as well as other use cases such as software update delivery. A realization of "HTTP Multicast" over "IP Multicast" is described for the video delivery use case. IP multicast is commonly used for IPTV services. DVB and BBF is also developing a reference architecture for IP Multicast service. A few problems with IPMC, such as waste of transmission bandwidth, increase in signaling when there are few users are described. Realization over BIER, through a BIER Multicast Overlay Layer, is described as an alternative. How BIER Multicast Overlay operation improves over IP Multicast, such as reduction in signaling, dynamic creation of multicast groups to reduce signaling and bandwidth wastage is described. We conclude with few next steps.

 Work in Progress

 Stateless multicast switching in software defined networks

 IEEE ICC 2016

 Engineering Egress with Edge Fabric, Steering Oceans of Content to the World

 ACM SIGCOMM 2017

 Technical Realization of Service Based Architecture

 3GPP

 New SID for Enhancements to the Service-Based 5G System Architecture

 3GPP

 Acknowledgements

	 The authors would like to thank Dirk von Hugo and Andrew Malis for
	 their reviews and valuable comments. We would also like to thank
	 Joel Halpern, the chair of the SFC WG, and Adrian Farrel for
	 guiding us through the Independent Submission Editor (ISE)
	 path.

 Authors' Addresses

 InterDigital Europe, Ltd

 64 Great Eastern Street, 1st Floor
 London
 EC2A 3QR
 United Kingdom

 Dirk.Trossen@InterDigital.com

 InterDigital Communications, LLC

 1001 E Hector St
 Conshohocken
 PA

 United States of America

 Debashish.Purkayastha@InterDigital.com

 InterDigital Communications, LLC

 1000 Sherbrooke Street West
 Montreal

 Canada

 Akbar.Rahman@InterDigital.com

