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Abstract
Adoption of cloud and fog technology allows operators to deploy a single "Service Function" (SF)
to multiple "execution locations". The decision to steer traffic to a specific location may change
frequently based on load, proximity, etc. Under the current Service Function Chaining (SFC)
framework, steering traffic dynamically to the different execution endpoints requires a specific
"rechaining", i.e., a change in the service function path reflecting the different IP endpoints to be
used for the new execution points. This procedure may be complex and take time. In order to
simplify rechaining and reduce the time to complete the procedure, we discuss separating the
logical Service Function Path (SFP) from the specific execution endpoints. This can be done by
identifying the SFs using a name rather than a routable IP endpoint (or Layer 2 address). This
document describes the necessary extensions, additional functions, and protocol details in the
Service Function Forwarder (SFF) to handle name-based relationships.

This document presents InterDigital's approach to name-based SFC. It does not represent IETF
consensus and is presented here so that the SFC community may benefit from considering this
mechanism and the possibility of its use in the edge data centers.
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1. Introduction 
The requirements on today's networks are very diverse, enabling multiple use cases such as the
Internet of Things (IoT), Content Distribution, Gaming, and Network functions such as Cloud
Radio Access Network (RAN) and 5G control planes based on a Service-Based Architecture (SBA).
These services are deployed, provisioned, and managed using Cloud-based techniques as seen in
the IT world. Virtualization of compute and storage resources is at the heart of providing (often
web) services to end users with the ability to quickly provision virtualized service endpoints
through, e.g., container-based techniques. This creates the ability to dynamically compose new
services from existing services. It also allows an operator to move a service instance in response
to user mobility or to change resource availability. When moving from a purely "distant cloud"
model to one of localized micro data centers with regional, metro, or even street level, often
called "edge" data centers, such virtualized service instances can be instantiated in topologically
different locations with the overall "distant" data center now being transformed into a network
of distributed ones. The reaction of content providers, like Facebook, Google, NetFlix, and others,
is not just to rely on deploying content servers at the ingress of the customer network. Instead,
the trend is towards deploying multiple Point of Presences (POPs) within the customer network,
those POPs being connected through proprietary mechanisms  to push content.

The Service Function Chaining (SFC) framework  allows network operators as well as
service providers to compose new services by chaining individual "service functions". Such
chains are expressed through explicit relationships of functional components (the SFs) realized
through their direct Layer 2 (e.g., Media Access Control (MAC) address) or Layer 3 (e.g., IP
address) relationship as defined through next-hop information that is being defined by the
network operator. See Section 4 for more background on SFC.

In a dynamic service environment of distributed data centers such as the one outlined above,
with the ability to create and recreate service endpoints frequently, the SFC framework requires
reconfiguring the existing chain through information based on the new relationships, causing
overhead in a number of components, specifically the orchestrator that initiates the initial SFC
and any possible reconfiguration.

This document describes how such changes can be handled without involving the initiation of
new and reconfigured SFCs. This is accomplished by lifting the chaining relationship from Layer
2 and Layer 3 information to that of SF "names", which can, for instance, be expressed as URIs. In
order to transparently support such named relationships, we propose to embed the necessary
functionality directly into the Service Function Forwarder (SFF) as described in . With
that, the SFF described in this document allows for keeping an existing SFC intact, as described

[Schlinker2017]

[RFC7665]

[RFC7665]
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by its Service Function Path (SFP), while enabling the selection of appropriate service function
endpoint(s) during the traversal of packets through the SFC. This document is an Independent
Submission to the RFC Editor. It is not an output of the IETF SFC WG.

2. Terminology 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Example Use Case: 5G Control-Plane Services 
We exemplify the need for chaining SFs at the level of a service name through a use case
stemming from the current 3GPP Release 16 work on Service Based Architecture (SBA) 

, . In this work, mobile network control planes
are proposed to be realized by replacing the traditional network function interfaces with a fully
service-based one. HTTP was chosen as the application-layer protocol for exchanging suitable
service requests . With this in mind, the exchange between, for example, the
3GPP-defined (Rel. 15) Session Management Function (SMF) and the Access and Mobility
Management Function (AMF) in a 5G control plane is being described as a set of web-service-like
requests that are, in turn, embedded into HTTP requests. Hence, interactions in a 5G control
plane can be modeled based on SFCs where the relationship is between the specific (IP-based) SF
endpoints that implement the necessary service endpoints in the SMF and AMF. The SFs are
exposed through URIs with work ongoing to define the used naming conventions for such URIs.

This move from a network function model (in pre-Release 15 systems of 3GPP) to a service-based
model is motivated through the proliferation of data-center operations for mobile network
control-plane services. In other words, typical IT-based methods to service provisioning,
particularly that of virtualization of entire compute resources, are envisioned to being used in
future operations of mobile networks. Hence, operators of such future mobile networks desire to
virtualize SF endpoints and direct (control-plane) traffic to the most appropriate current service
instance in the most appropriate (local) data center. Such a data center is envisioned as being
interconnected through a software-defined wide area network (SD-WAN). "Appropriate" here can
be defined by topological or geographical proximity of the service initiator to the SF endpoint.
Alternatively, network or service instance compute load can be used to direct a request to a more
appropriate (in this case less loaded) instance to reduce possible latency of the overall request.
Such data-center-centric operation is extended with the trend towards regionalization of load
through a "regional office" approach, where micro data centers provide virtualizable resources
that can be used in the service execution, creating a larger degree of freedom when choosing the
"most appropriate" service endpoint for a particular incoming service request.

[SDO-3GPP-SBA] [SDO-3GPP-SBA-ENHANCEMENT]

[SDO-3GPP-SBA]
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While the move to a service-based model aligns well with the framework of SFC, choosing the
most appropriate service instance at runtime requires so-called "rechaining" of the SFC since the
relationships in said SFC are defined through Layer 2 or Layer 3 identifiers, which, in turn, are
likely to be different if the chosen service instances reside in different parts of the network (e.g.,
in a regional data center).

Hence, when a traffic flow is forwarded over a service chain expressed as an SFC-compliant SFP,
packets in the traffic flow are processed by the various SF instances, with each SF instance
applying an SF prior to forwarding the packets to the next network node. It is a service-layer
concept and can possibly work over any Virtual network layer and corresponding underlay
network. The underlay network can be IP or alternatively any Layer 2 technology. At the service
layer, SFs are identified using a path identifier and an index. Eventually, this index is translated
to an IP address (or MAC address) of the host where the SF is running. Because of this, any
change-of-service function instance is likely to require a change of the path information since
either the IP address (in the case of changing the execution from one data center to another) or
MAC address will change due to the newly selected SF instance.

Returning to our 5G control-plane example, a user's connection request to access an application
server in the Internet may start with signaling in the control plane to set up user-plane bearers.
The connection request may flow through SFs over a service chain in the control plane, as
deployed by a network operator. Typical SFs in a 5G control plane may include "RAN termination
/ processing", "Slice Selection Function", "AMF", and "SMF". A "Network Slice" is a complete logical
network including Radio Access Network (RAN) and Core Network (CN). Distinct RAN and CN
Slices may exist. A device may access multiple Network Slices simultaneously through a single
RAN. The device may provide Network Slice Selection Assistance Information (NSSAI)
parameters to the network to help it select a RAN and a Core Network part of a slice instance.
Part of the control plane, the Common Control Network Function (CCNF), includes the Network
Slice Selection Function (NSSF), which is in charge of selecting core Network Slice instances. The
classifier, as described in SFC architecture, may reside in the user terminal or at the Evolved
Node B (eNB). These SFs can be configured to be part of an SFC. We can also say that some of the
configurations of the SFP may change at the execution time. For example, the SMF may be
relocated as the user moves and a new SMF may be included in the SFP based on user location. 
Figure 1 shows the example SFC described here.

Figure 1: Mapping SFC onto Service Function Execution Points along a Service Function Path 

+------+   +---------+  +-----+   +-----+  
| User |   | Slice   |  |     |   |     |
| App  |-->| Control |->| AMF |-->| SMF |-->
| Fn   |   | Function|  |     |   |     |  
+------+   +---------+  +-----+   +-----+
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4. Background 
 describes an architecture for the specification, creation, and ongoing maintenance of

SFCs. It includes architectural concepts, principles, and components used in the construction of
composite services through deployment of SFCs. In the following, we outline the parts of this SFC
architecture relevant for our proposed extension, followed by the challenges with this current
framework in the light of our example use case.

[RFC7665]

4.1. Relevant Part of SFC Architecture 
The SFC architecture, as defined in , describes architectural components such as SF,
classifier, and SFF. It describes the SFP as the logical path of an SFC. Forwarding traffic along such
an SFP is the responsibility of the SFF. For this, the SFFs in a network maintain the requisite SFP
forwarding information. Such SFP forwarding information is associated with a service path
identifier (SPI) that is used to uniquely identify an SFP. The service forwarding state is
represented by the Service Index (SI) and enables an SFF to identify which SFs of a given SFP
should be applied, and in what order. The SFF also has information that allows it to forward
packets to the next SFF after applying local SFs.

The operational steps to forward traffic are then as follows: Traffic arrives at an SFF from the
network. The SFF determines the appropriate SF the traffic should be forwarded to via
information contained in the SFC encapsulation. After SF processing, the traffic is returned to the
SFF and, if needed, is forwarded to another SF associated with that SFF. If there is another non-
local hop (i.e., to an SF with a different SFF) in the SFP, the SFF further encapsulates the traffic in
the appropriate network transport protocol and delivers it to the network for delivery to the next
SFF along the path. Related to this forwarding responsibility, an SFF should be able to interact
with metadata.

[RFC7665]

4.2. Challenges with Current Framework 
As outlined in previous sections, the SFP defines an ordered sequence of specific SF instances
being used for the interaction between initiator and SFs along the SFP. These SFs are addressed
by IP (or any L2/MAC) addresses and defined as next-hop information in the network locator
maps of traversing SFF nodes.

As outlined in our use case, however, the service provider may want to provision SFC nodes
based on dynamically spun-up SF instances so that these (now virtualized) SFs can be reached in
the SFC domain using the SFC underlay layer.

Following the original model of SFC, any change in a specific execution point for a specific SF
along the SFP will require a change of the SFP information (since the new SF execution point
likely carries different IP or L2 address information) and possibly even the next-hop information
in SFFs along the SFP. In case the availability of new SF instances is rather dynamic (e.g., through
the use of container-based virtualization techniques), the current model and realization of SFC
could lead to reducing the flexibility of service providers and increasing the management
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complexity incurred by the frequent changes of (service) forwarding information in the
respective SFF nodes. This is because any change of the SFP (and possibly next-hop info) will
need to go through suitable management cycles.

To address these challenges through a suitable solution, we identify the following requirements:

• Relations between Service Execution Points  be abstracted so that, from an SFP point of
view, the Logical Path never changes. 

• Deriving the Service Execution Points from the abstract SFP  be fast and incur
minimum delay. 

• Identification of the Service Execution Points  use a combination of Layer 2 or
Layer 3 mechanisms. 

The next section outlines a solution to address the issue, allowing for keeping SFC information
(represented in its SFP) intact while addressing the desired flexibility of the service provider.

MUST

SHOULD

SHOULD NOT

5. Name-Based Operation in SFF 

5.1. General Idea 
The general idea is two pronged. Firstly, we elevate the definition of an SFP onto the level of
"name-based interactions" rather than limiting SFPs to Layer 2 or Layer 3 information only.
Secondly, we extend the operations of the SFF to allow for forwarding decisions that take into
account such name-based interaction while remaining backward compatible to the current SFC
architecture as defined in . In the following sections, we outline these two components
of our solution.

If the next-hop information in the Network Locator Map (NLM) is described using an L2/L3
identifier, the name-based SFF (nSFF) may operate as described for (traditional) SFF, as defined
in . On the other hand, if the next-hop information in the NLM is described as a name,
then the nSFF operates as described in the following sections.

In the following sections, we outline the two components of our solution.

[RFC7665]

[RFC7665]

5.2. Name-Based Service Function Path (nSFP) 
The existing SFC framework is defined in . Section 4 outlines that the SFP information
is representing path information based on Layer 2 or Layer 3 information, i.e., MAC or IP
addresses, causing the aforementioned frequent adaptations in cases of execution-point changes.
Instead, we introduce the notion of a "name-based Service Function Path (nSFP)".

In today's networking terms, any identifier can be treated as a name, but we will illustrate the
realization of a "Name-based SFP" through extended SFF operations (see Section 6) based on URIs
as names and HTTP as the protocol of exchanging information. Here, URIs are being used to
name for an SF along the nSFP. Note that the nSFP approach is not restricted to HTTP (as the
protocol) and URIs (as next-hop identifier within the SFP). Other identifiers such as an IP address

[RFC7665]
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itself can also be used and are interpreted as a "name" in the nSFP. IP addresses as well as fully
qualified domain names forming complex URIs (uniform resource identifiers), such as
www.example.com/service_name1, are all captured by the notion of "name" in this document.

Generally, nSFPs are defined as an ordered sequence of the "name" of SFs, and a typical nSFP
may look like: 192.0.x.x -> www.example.com -> www.example2.com/service1 ->
www.example2.com/service2.

Our use case in Section 3 can then be represented as an ordered named sequence. An example
for a session initiation that involves an authentication procedure, this could look like 192.0.x.x ->
smf.example.org/session_initiate -> amf.example.org/auth -> smf.example.org/session_complete -
> 192.0.x.x. (Note that this example is only a conceptual one since the exact nature of any future
SBA-based exchange of 5G control-plane functions is yet to be defined by standardization bodies
such as 3GPP).

In accordance with our use case in Section 3, any of these named services can potentially be
realized through more than one replicated SF instance. This leads to making dynamic decisions
on where to send packets along the SAME SFP information, being provided during the execution
of the SFC. Through elevating the SFP onto the notion of name-based interactions, the SFP will
remain the same even if those specific execution points change for a specific service interaction.

The following diagram in Figure 2 describes this nSFP concept and the resulting mapping of
those named interactions onto (possibly) replicated instances.

Figure 2: Mapping SFC onto Service Function Execution Points along a Service Function Path Based
on Virtualized Service Function Instance 

 +---------------------------------------------------------------+
 |Service Layer                                                  |
 | 192.0.x.x --> www.example.com --> www.example2.com -->        |
 |                      ||              ||                       |
 +----------------------||--------------||-----------------------+
                        ||              ||
                        ||              ||
 +----------------------||--------------||-----------------------+
 |Underlay Network      \/              \/                       |
 |               +--+ +--+ +--+    +--+ +--+ +--+                |
 |               |  | |  | |  |    |  | |  | |  |                |
 |               +--+ +--+ +--+    +--+ +--+ +--+                |
 |               Compute and       Compute and                   |
 |               storage nodes     storage nodes                 |
 +---------------------------------------------------------------+

5.3. Name-Based Network Locator Map (nNLM) 
In order to forward a packet within an nSFP, we need to extend the NLM as defined in 
with the ability to consider name relations based on URIs as well as high-level transport
protocols such as HTTP for means of SFC packet forwarding. Another example for SFC packet
forwarding could be that of Constrained Application Protocol (CoAP).

[RFC8300]
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The extended NLM or name-based Network Locator Map (nNLM) is shown in Table 1 as an
example for www.example.com being part of the nSFP. Such extended nNLM is stored at each
SFF throughout the SFC domain with suitable information populated to the nNLM during the
configuration phase.

Alternatively, the extended NLM may be defined with implicit name information rather than
explicit URIs as in Table 1. In the example of Table 2, the next hop is represented as a generic
HTTP service without a specific URI being identified in the extended NLM. In this scenario, the
SFF forwards the packet based on parsing the HTTP request in order to identify the host name or
URI. It retrieves the URI and may apply policy information to determine the destination host/
service.

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 www.example.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 1: Name-Based Network Locator Map 

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 HTTP Service HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 2: Name-Based Network Locator Map with Implicit Name
Information 
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5.4. Name-Based Service Function Forwarder (nSFF) 
It is desirable to extend the SFF of the SFC underlay to handle nSFPs transparently and without
the need to insert any SF into the nSFP. Such extended nSFFs would then be responsible for
forwarding a packet in the SFC domain as per the definition of the (extended) nSFP.

In our example realization for an extended SFF, the solution described in this document uses
HTTP as the protocol of forwarding SFC packets to the next (name-based) hop in the nSFP. The
URI in the HTTP transaction is the name in our nSFP information, which will be used for name-
based forwarding.

Following our reasoning so far, HTTP requests (and more specifically, the plaintext-encoded
requests above) are the equivalent of packets that enter the SFC domain. In the existing SFC
framework, an IP payload is typically assumed to be a packet entering the SFC domain. This
packet is forwarded to destination nodes using the L2 encapsulation. Any layer 2 network can be
used as an underlay network. This notion is now extended to packets being possibly part of an
entire higher-layer application such as HTTP requests. The handling of any intermediate layers,
such as TCP and IP, is left to the realization of the (extended) SFF operations towards the next
(named) hop. For this, we will first outline the general lifecycle of an SFC packet in the following
subsection, followed by two examples for determining next-hop information in Section 6.2.3,
finished up by a layered view on the realization of the nSFF in Section 6.2.4.

5.5. High-Level Architecture 

The high-level architecture for name-based operation shown in Figure 3 is very similar to the SFC
architecture as described in . Two new functions are introduced, as shown in the
above diagram: namely, the nSFF and the Name Resolver (NR).

The nSFF is an extension of the existing SFF and is capable of processing SFC packets based on
nNLM information, determining the next SF where the packet should be forwarded, and the
required transport encapsulation (TE). Like standard SFF operation, it adds TE to the SFC packet
and forwards it.

Figure 3: High-Level Architecture 

+----------+
| SF1      |                 +--------+                  +------+ 
| instance |\                |   NR   |                  | SF2  | 
+----------+ \               +--------+                  +------+ 
              \                  ||                         ||
+------------+ \ +-------+   +---------+   +---------+   +-------+
| Classifier |---| nSFF1 |---|Forwarder|---|Forwarder|---| nSFF2 |    
+------------+   +-------+   +---------+   +---------+   +-------+
                                                            ||
                                                        +----------+ 
                                                        | Boundary |
                                                        |  node    |
                                                        +----------+

[RFC7665]
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The NR is a new functional component, capable of identifying the execution endpoints, where a
"named SF" is running, triggered by suitable resolution requests sent by the nSFF. Though this is
similar to DNS function, it is not same. It does not use DNS protocols or data records. A new
procedure to determine the suitable routing/forwarding information towards the nSFF serving
the next hop of the SFP is used. The details are described later.

The other functional components, such as classifier and SF, are the same as described in SFC
architecture, as defined in , while the Forwarders shown in the above diagram are
traditional Layer 2 switches.

[RFC7665]

Step 1:

Step 2:

Step 3:

5.6. Operational Steps 
In the proposed solution, the operations are realized by the name-based SFF, called "nSFF". We
utilize the high-level architecture in Figure 3 to describe the traversal between two SF instances
of an nSFP-based transaction in an example chain of: 192.0.x.x -> SF1 (www.example.com) -> SF2
(www.example2.com) -> SF3 -> ...

Service Function 3 (SF3) is assumed to be a classical SF; hence, existing SFC mechanisms can be
used to reach it and will not be considered in this example.

According to the SFC lifecycle, as defined in , based on our example chain above, the
traffic originates from a classifier or another SFF on the left. The traffic is processed by the
incoming nSFF1 (on the left side) through the following steps. The traffic exits at nSFF2.

[RFC7665]

At nSFF1, the following nNLM is assumed: 

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 255 192.0.2.1 VXLAN-gpe

10 254 198.51.100.10 GRE

10 253 www.example.com HTTP

10 252 www.example2.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 3: nNLM at nSFF1 

nSFF1 removes the previous transport encapsulation (TE) for any traffic originating
from another SFF or classifier (traffic from an SF instance does not carry any TE and is
therefore directly processed at the nSFF). 
nSFF1 then processes the Network Service Header (NSH) information, as defined in 

, to identify the next SF at the nSFP level by mapping the NSH information to[RFC8300]
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Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

the appropriate entry in its nNLM (see Table 3) based on the provided SPI/SI
information in the NSH (see Section 4) in order to determine the name-based identifier
of the next-hop SF. With such nNLM in mind, the nSFF searches the map for SPI = 10
and SI = 253. It identifies the next hop as = www.example.com and HTTP as the protocol
to be used. Given that the next hop resides locally, the SFC packet is forwarded to the
SF1 instance of www.example.com. Note that the next hop could also be identified from
the provided HTTP request, if the next-hop information was identified as a generic
HTTP service, as defined in Section 5.3. 
The SF1 instance then processes the received SFC packet according to its service
semantics and modifies the NSH by setting SPI = 10 and SI = 252 for forwarding the
packet along the SFP. It then forwards the SFC packet to its local nSFF, i.e., nSFF1. 
nSFF1 processes the NSH of the SFC packet again, now with the NSH modified (SPI = 10,
SI = 252) by the SF1 instance. It retrieves the next-hop information from its nNLM in 
Table 3 to be www.example2.com. Due to this SF not being locally available, the nSFF
consults any locally available information regarding routing/forwarding towards a
suitable nSFF that can serve this next hop. 
If such information exists, the Packet (plus the NSH information) is marked to be sent
towards the nSFF serving the next hop based on such information in Step 8. 
If such information does not exist, nSFF1 consults the NR to determine the suitable
routing/forwarding information towards the identified nSFF serving the next hop of the
SFP. For future SFC packets towards this next hop, such resolved information may be
locally cached, avoiding contacting the NR for every SFC packet forwarding. The packet
is now marked to be sent via the network in Step 8. 
Utilizing the forwarding information determined in Steps 6 or 7, nSFF1 adds the
suitable TE for the SFC packet before forwarding via the forwarders in the network
towards the next nSFF22. 
When the Packet (+NSH+TE) arrives at the outgoing nSFF2, i.e., the nSFF serving the
identified next hop of the SFP, it removes the TE and processes the NSH to identify the
next-hop information. At nSFF2 the nNLM in Table 4 is assumed. Based on this nNLM
and NSH information where SPI = 10 and SI = 252, nSFF2 identifies the next SF as
www.example2.com. 

SPI SI Next Hop(s) Transport Encapsulation (TE)

10 252 www.example2.com HTTP

40 251 198.51.100.15 GRE

50 200 01:23:45:67:89:ab Ethernet

15 212 Null (end of path) None

Table 4: nNLM at SFF2 

If the next hop is locally registered at the nSFF, it forwards the packet (+NSH) to the SF
instance using suitable IP/MAC methods for doing so. 
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If the next hop is not locally registered at the nSFF, the outgoing nSFF adds new TE
information to the packet and forwards the packet (+NSH+TE) to the next SFF or
boundary node, as shown in Table 4. 

6. nSFF Forwarding Operations 
This section outlines the realization of various nSFF forwarding operations in Section 5.6.
Although the operations in Section 5 utilize the notion of name-based transactions in general, we
exemplify the operations here in Section 5 specifically for HTTP-based transactions to ground our
description into a specific protocol for such name-based transaction. We will refer to the various
steps in each of the following subsections.

6.1. nSFF Protocol Layers 
Figure 4 shows the protocol layers based on the high-level architecture in Figure 3.

The nSFF component here is shown as implementing a full incoming/outgoing TCP/IP protocol
stack towards the local SFs, while implementing the nSFF-NR and nSFF-nSFF protocols based on
the descriptions in Section 6.2.3.

For the exchange of HTTP-based SF transactions, the nSFF terminates incoming TCP connections
as well as outgoing TCP connections to local SFs, e.g., the TCP connection from SF1 terminates at
nSFF1, and nSFF1 may store the connection information such as socket information. It also
maintains the mapping information for the HTTP request such as originating SF, destination SF,
and socket ID. nSFF1 may implement sending keep-alive messages over the socket to maintain
the connection to SF1. Upon arrival of an HTTP request from SF1, nSFF1 extracts the HTTP
Request and forwards it towards the next node as outlined in Section 6.2. Any returning response
is mapped onto the suitable open socket (for the original request) and sent towards SF1.

Figure 4: Protocol Layers 

+-------+  +------+----+                              +----+-----+
|App    |  |      |    |   +--------+                 |    |     |
|HTTP   |  |-------->  |   |  NR    |                 |nSFF----->|--
|TCP    |->| TCP  |nSFF|   +---/\---+                 |    | TCP | |
|IP     |  | IP   |    |       ||                     |    | IP  | |
+-------+  +------+----+  +---------+   +---------+   +----------+ |
|   L2  |  |      L2   |->|Forwarder|-->|Forwarder|-->|   L2     | | 
+-------+  +------+----+  +---------+   +---------+   +----------+ | 
  SF1           nSFF1                                     nSFF2    
|                             
                                              +-------+            |
                                              | App   |/           |
                                              | HTTP  | -----------+
                                              | TCP   |\
                                              | IP    |
                                              | L2    |
                                              +-------+
                                                SF2
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At the outgoing nSFF2, the destination SF2/Host is identified from the HTTP request message. If
no TCP connection exists to the SF2, a new TCP connection is opened towards the destination SF2
and the HTTP request is sent over said TCP connection. The nSFF2 may also save the TCP
connection information (such as socket information) and maintain the mapping of the socket
information to the destination SF2. When an HTTP response is received from SF2 over the TCP
connection, nSFF2 extracts the HTTP response, which is forwarded to the next node. nSFF2 may
maintain the TCP connection through keep-alive messages.

6.2. nSFF Operations 
In this section, we present three key aspects of operations for the realization of the steps in 
Section 5.6, namely, (i) the registration of local SFs (for Step 3 in Section 5.6), (ii) the forwarding
of SFC packets to and from local SFs (for Steps 3, 4, and 10 in Section 5.6), (iii) the forwarding to a
remote SF (for Steps 5, 6, and 7 in Section 5.6) and to the NR as well as (iv) for the lookup of a
suitable remote SF (for Step 7 in Section 5.6). We also cover aspects of maintaining local lookup
information for reducing lookup latency and other issues.

6.2.1. Forwarding between nSFFs and nSFF-NRs 

Forwarding between the distributed nSFFs as well as between nSFFs and NRs is realized over the
operator network via a path-based approach. A path-based approach utilizes path information
provided by the source of the packet for forwarding said packet in the network. This is similar to
segment routing albeit differing in the type of information provided for such source-based
forwarding as described in this section. In this approach, the forwarding information to a remote
nSFF or the NR is defined as a "path identifier" (pathID) of a defined length where said length
field indicates the full pathID length. The payload of the packet is defined by the various
operations outlined in the following subsections, resulting in an overall packet being transmitted.
With this, the generic forwarding format (GFF) for transport over the operator network is
defined in Figure 5 with the length field defining the length of the pathID provided.

• Length (12 bits): Defines the length of the pathID, i.e., up to 4096 bits 
• Path ID: Variable-length bit field derived from IPv6 source and destination address 

For the pathID information, solutions such as those in  can be used. Here, the IPv6
source and destination addresses are used to realize a so-called path-based forwarding from the
incoming to the outgoing nSFF or the NR. The forwarders in Figure 4 are realized via SDN
(software-defined networking) switches, implementing an AND/CMP operation based on
arbitrary wildcard matching over the IPv6 source and destination addresses as outlined in 

. Note that in the case of using IPv6 address information for path-based forwarding,
the step of removing the TE at the outgoing nSFF in Figure 4 is realized by utilizing the provided

Figure 5: Generic Forwarding Format (GFF) 

+---------+-----------------+------------------------//------------+
|         |                 |                       //             |
| Length  | Path ID         |  Payload             //              |
|(12 bits)|                 |                     //               |
+---------+-----------------+--------------------//----------------+

[Reed2016]

[Reed2016]
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(existing) IP header (which was used for the purpose of the path-based forwarding in 
) for the purpose of next-hop forwarding such as that of IP-based routing. As

described in Step 8 of the extended nSFF operations, this forwarding information is used as
traffic encapsulation. With the forwarding information utilizing existing IPv6 information, IP
headers are utilized as TE in this case. The next-hop nSFF (see Figure 4) will restore the IP header
of the packet with the relevant IP information used to forward the SFC packet to SF2, or it will
create suitable TE information to forward the information to another nSFF or boundary node.
Forwarding operations at the intermediary forwarders, i.e., SDN switches, examine the pathID
information through a flow-matching rule in which a specific switch-local output port is
represented through the specific assigned bit position in the pathID. Upon a positive match in
said rule, the packet is forwarded on said output port.

Alternatively, the solution in  suggests using a so-called BIER (Binary Indexed
Explicit Replication) underlay. Here, the nSFF would be realized at the ingress to the BIER
underlay, injecting the SFC packet header (plus the Network Service Header (NSH)) with BIER-
based traffic encapsulation into the BIER underlay with each of the forwarders in Figure 4 being
realized as a so-called Bit-Forwarding Router (BFR) .

[Reed2016]

[BIER-MULTICAST]

[RFC8279]

6.2.1.1. Transport Protocol Considerations 
Given that the proposed solution operates at the "named-transaction" level, particularly for HTTP
transactions, forwarding between nSFFs and/or NRs  be implemented via a transport
protocol between nSFFs and/or NRs in order to provide reliability, segmentation of large GFF
packets, and flow control, with the GFF in Figure 5 being the basic forwarding format for this.

Note that the nSFFs act as TCP proxies at ingress and egress, thus terminating incoming and
initiating outgoing HTTP sessions to SFs.

Figure 6 shows the packet format being used for the transmission of data, being adapted from
the TCP header. Segmentation of large transactions into single transport protocol packets is
realized through maintaining a "Sequence number". A "Checksum" is calculated over a single
data packet with the ones-complement TCP checksum calculation being used. The "Window Size"
field indicates the current maximum number of transport packets that are allowed in-flight by
the egress nSFF. A data packet is sent without a "Data" field to indicate the end of the (e.g., HTTP)
transaction.

Note that, in order to support future named transactions based on other application protocols,
such as Constrained Application Protocol (CoAP), future versions of the transport protocol 
introduce a "Type" field that indicates the type of application protocol being used between SF and
nSFF with "Type" 0x01 proposed for HTTP. This is being left for future study.

SHOULD

MAY
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Given the path-based forwarding being used between nSFFs, the transport protocol between
nSFFs utilizes negative acknowledgements from the egress nSFF towards the ingress nSFF. The
transport protocol negative Acknowledgment (NACK) packet carries the number of NACKs as
well as the specific sequence numbers being indicated as lost in the "NACK number" field(s) as
shown in Figure 7.

If the indicated number of NACKs in a received NACK packet is nonzero, the ingress nSFF will
retransmit all sequence numbers signaled in the packet while decreasing its congestion window
size for future transmissions.

If the indicated number of NACKs in a received NACK packet is zero, it will indicate the current
congestion window as being successfully (and completely) being transmitted, increasing the
congestion window size if smaller than the advertised "Window Size" in Figure 6.

The maintenance of the congestion window is subject to realization at the ingress nSFF and left
for further study in nSFF realizations.

Figure 6: Transport Protocol Data Packet Format 

    +----------------------------------------------+
    |         16 bits       |        16 bits       |
    +----------------------------------------------+
    |              Sequence number                 |
    +----------------------------------------------+
    |       Checksum        |      Window Size     |
    +----------------------------------------------+
    |                      ...                     |
    |                Data (Optional)               |
    +----------------------------------------------+

Figure 7: Transport Protocol NACK Packet Format 

    +-----------------------+----------------------+
    |         16 bits       |        16 bits       |
    +----------------------------------------------+
    |    Number of NACKs    |                      +
    +----------------------------------------------+
    |                   NACK number                |
    +----------------------------------------------+
    +                ... NACK number               +
    +----------------------------------------------+

6.2.2. SF Registration 

As outlined in Steps 3 and 10 of Section 5.6, the nSFF needs to determine if the SF derived from
the Name-Based Network Locator (nNLM) is locally reachable or whether the packet needs to be
forwarded to a remote SFF. For this, a registration mechanism is provided for such local SF with
the local nSFF. Two mechanisms can be used for this:

1. SF-initiated: We assume that the SF registers its Fully Qualified Domain Name (FQDN) to
the local nSFF. As local mechanisms, we foresee that either a Representational State
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Transfer (REST-based) interface over the link-local link or configuration of the nSFF
(through configuration files or management consoles) can be utilized. Such local
registration events lead to the nSFF registering the given FQDN with the NR in
combination with a system-unique nSFF identifier that is being used for path-
computation purposes in the NR. For the registration, the packet format in Figure 8 is
used (inserted as the payload in the GFF of Figure 5 with the pathID towards the NR). 

▪ R/D: 1-bit length (0 for Register, 1 for Deregister) 

▪ hash(FQDN): 16-bit length for a hash over the FQDN of the SF 

▪ nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF 

We assume that the pathID towards the NR is known to the nSFF through configuration
means. 

The NR maintains an internal table that associates the hash(FQDN), the nSFF_id
information, as well as the pathID information being used for communication between
nSFFs and NRs. The nSFF locally maintains a mapping of registered FQDNs to IP
addresses for the latter using link-local private IP addresses. 

1. Orchestration-based: In this mechanism, we assume that SFC to be orchestrated and the
chain to be provided through an orchestration template with FQDN information
associated to a compute/storage resource that is being deployed by the orchestrator. We
also assume knowledge at the orchestrator of the resource topology. Based on this, the
orchestrator can now use the same REST-based protocol defined in option 1 to instruct
the NR to register the given FQDN, as provided in the template, at the nSFF it has
identified as being the locally servicing nSFF, provided as the system-unique nSFF
identifier. 

Figure 8: Registration Packet Format 

+---------+------------------+----------------+
|         |                  |                |
|   R/D   |    hash(FQDN)    |    nSFF_ID     |
| (1 bit) |    (16 bits)     |    (8 bits)    |
+---------+------------------+----------------+

6.2.3. Local SF Forwarding 

There are two cases of local SF forwarding, namely, the SF sending an SFC packet to the local
nSFF (incoming requests) or the nSFF sending a packet to the SF (outgoing requests) as part of
Steps 3 and 10 in Section 5.6. In the following, we outline the operation for HTTP as an example-
named transaction.

As shown in Figure 4, incoming HTTP requests from SFs are extracted by terminating the
incoming TCP connection at their local nSFFs at the TCP level. The nSFF  maintain a
mapping of open TCP sockets to HTTP requests (utilizing the URI of the request) for HTTP
response association.

MUST
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For outgoing HTTP requests, the nSFF utilizes the maintained mapping of locally registered
FQDNs to link-local IP addresses (see Section 6.2.2, option 1). Hence, upon receiving an SFC
packet from a remote nSFF (in Step 9 of Section 5.6), the nSFF determines the local existence of
the SF through the registration mechanisms in Section 6.2.2. If said SF does exist locally, the HTTP
(+NSH) packet, after stripping the TE, is sent to the local SF as Step 10 in Section 5.6 via a TCP-
level connection. Outgoing nSFFs  keep TCP connections open to local SFs for improving
SFC packet delivery in subsequent transactions.

SHOULD

6.2.4. Handling of HTTP Responses 

When executing Steps 3 and 10 in Section 5.6, the SFC packet will be delivered to the locally
registered next hop. As part of the HTTP protocol, responses to the HTTP request will need to be
delivered on the return path to the originating nSFF (i.e., the previous hop). For this, the nSFF
maintains a list of link-local connection information, e.g., sockets to the local SF and the pathID
on which the request was received. Once receiving the response, nSFF consults the table to
determine the pathID of the original request, forming a suitable GFF-based packet to be returned
to the previous nSFF.

When receiving the HTTP response at the previous nSFF, the nSFF consults the table of (locally)
open sockets to determine the suitable local SF connection, mapping the received HTTP response
URI to the stored request URI. Utilizing the found socket, the HTTP response is forwarded to the
locally registered SF.

6.2.5. Remote SF Forwarding 

In Steps 5, 6, 7, and 8 of Section 5.6, an SFC packet is forwarded to a remote nSFF based on the
nNLM information for the next hop of the nSFP. Section 6.2.5.1 handles the case of suitable
forwarding information to the remote nSFF not existing, therefore consulting the NR to obtain
suitable information. Section 6.2.5.2 describes the maintenance of forwarding information at the
local nSFF. Section 6.2.5.3 describes the update of stale forwarding information. Note that the
forwarding described in Section 6.2.1 is used for the actual forwarding to the various nSFF
components. Ultimately, Section 6.2.5.4 describes the forwarding to the remote nSFF via the
forwarder network.

6.2.5.1. Remote SF Discovery 
The nSFF communicates with the NR for two purposes: namely, the registration and discovery of
FQDNs. The packet format for the former was shown in Figure 8 in Section 6.2.2, while Figure 9
outlines the packet format for the discovery request.

Figure 9: Discovery Packet Format 

+--------------+-------------+ +--------+-----------------//--------+
|              |             | |        |                //         |
|   hash(FQDN) |  nSFF_ID    | | Length | pathID        //          |
|   (16 bits)  |  (8 bits)   | |(4 bits)|              //           |     
+--------------+-------------+ +--------+-------------//------------+
        Path Request                     Path Response
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For Path Request:

• hash(FQDN): 16-bit length for a hash over the FQDN of the SF 
• nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF 

For Path Response:

• Length: 4-bit length that defines the length of the pathID 
• Path ID: Variable-length bit field derived from IPv6 source and destination address 

A path to a specific FQDN is requested by sending a hash of the FQDN to the NR together with its
nSFF_id, receiving as a response a pathID with a length identifier. The NR  maintain a
table of discovery requests that map discovered (hash of) FQDN to the nSFF_id that requested it
and the pathID that is being calculated as a result of the discovery request.

The discovery request for an FQDN that has not previously been served at the nSFF (or for an
FQDN whose pathID information has been flushed as a result of the update operations in Section
6.2.5.3) results in an initial latency incurred by this discovery through the NR, while any SFC
packet sent over the same SFP in a subsequent transaction will utilize the nSFF-local mapping
table. Such initial latency can be avoided by prepopulating the FQDN-pathID mapping
proactively as part of the overall orchestration procedure, e.g., alongside the distribution of the
nNLM information to the nSFF.

SHOULD

6.2.5.2. Maintaining Forwarding Information at Local nSFF 
Each nSFF  maintain an internal table that maps the (hash of the) FQDN information to a
suitable pathID. As outlined in Step 7 of Section 5.6, if a suitable entry does not exist for a given
FQDN, the pathID information is requested with the operations in Section 6.2.5.1 and the suitable
entry is locally created upon receiving a reply with the forwarding operation being executed as
described in Section 6.2.1.

If such an entry does exist (i.e., Step 6 of Section 5.6), the pathID is locally retrieved and used for
the forwarding operation in Section 6.2.1.

MUST

6.2.5.3. Updating Forwarding Information at nSFF 
The forwarding information maintained at each nSFF (see Section 6.2.5.2) might need to be
updated for three reasons:

1. An existing SF is no longer reachable: In this case, the nSFF with which the SF is locally
registered deregisters the SF explicitly at the NR by sending the packet in Figure 6 with
the hashed FQDN and the R/D bit set to 1 (for deregister). 

2. Another SF instance has become reachable in the network (and, therefore, might
provide a better alternative to the existing SF): In this case, the NR has received another
packet with a format defined in Figure 7 but a different nSFF_id value. 

3. Links along paths might no longer be reachable: The NR might use a suitable
southbound interface to transport networks to detect link failures, which it associates to
the appropriate pathID bit position. 
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For this purpose, the packet format in Figure 10 is sent from the NR to all affected nSFFs, using
the generic format in Figure 5.

• Type: 1-bit length (0 for Nsff ID, 1 for Link ID) 
• #IDs: 8-bit length for number of IDs in the list 
• IDs: List of IDs (Nsff ID or Link ID) 

The pathID to the affected nSFFs is computed as the binary OR over all pathIDs to those nSFF_ids
affected where the pathID information to the affected nSFF_id values is determined from the NR-
local table maintained in the registration/deregistration operation of Section 6.2.2.

The pathID may include the type of information being updated (e.g., node identifiers of leaf
nodes or link identifiers for removed links). The node identifier itself may be a special identifier
to signal "ALL NODES" as being affected. The node identifier may signal changes to the network
that are substantial (e.g., parallel link failures). The node identifier may trigger (e.g., recommend)
purging of the entire path table (e.g., rather than the selective removal of a few nodes only).

It will include the information according to the type. The included information may also be
related to the type and length information for the number of identifiers being provided.

In cases 1 and 2, the Type bit is set to 1 (type nSFF_id) and the affected nSFFs are determined by
those nSFFs that have previously sent SF discovery requests, utilizing the optional table mapping
previously registered FQDNs to nSFF_id values. If no table mapping the (hash of) FQDN to
nSFF_id is maintained, the update is sent to all nSFFs. Upon receiving the path update at the
affected nSFF, all appropriate nSFF-local mapping entries to pathIDs for the hash(FQDN)
identifiers provided will be removed, leading to a new NR discovery request at the next remote
nSFF forwarding to the appropriate FQDN.

In case 3, the Type bit is set to 0 (type linkID) and the affected nSFFs are determined by those
nSFFs whose discovery requests have previously resulted in pathIDs that include the affected
link, utilizing the optional table mapping previously registered FQDNs to pathID values (see 
Section 6.2.5.1). Upon receiving the node identifier information in the path update, the affected
nSFF will check its internal table that maps FQDNs to pathIDs to determine those pathIDs
affected by the link problems and remove path information that includes the received node
identifier(s). For this, the pathID entries of said table are checked against the linkID values
provided in the ID entry of the path update through a binary AND/CMP operation to check the
inclusion of the link in the pathIDs to the FQDNs. If any pathID is affected, the FQDN-pathID entry
is removed, leading to a new NR discovery request at the next remote nSFF forwarding to the
appropriate FQDN.

Figure 10: Path Update Format 

+---------+-----------------+--------------//----+
|         |                 |             //     |
|   Type  |     #IDs        |  IDs       //      |
| (1 bit) |    (8 bits)     |           //       |
+---------+-----------------+----------//--------+
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       Adoption of cloud and fog technology allows operators to deploy a
       single "Service Function" (SF) to multiple "execution locations".  The
       decision to steer traffic to a specific location may change frequently
       based on load, proximity, etc. Under the current Service Function
       Chaining (SFC) framework, steering traffic dynamically to the different
       execution endpoints requires a specific "rechaining", i.e., a change in
       the service function path reflecting the different IP endpoints to be
       used for the new execution points.  This procedure may be complex and
       take time. In order to simplify rechaining and reduce the time to
       complete the procedure, we discuss separating the logical Service
       Function Path (SFP) from the specific execution endpoints. This can be
       done by identifying the SFs using a name rather than a
       routable IP endpoint (or Layer 2 address). This document describes the
       necessary extensions, additional functions, and protocol details in the
       Service Function Forwarder (SFF) to handle name-based relationships.
      
       
	   This document presents InterDigital's approach to name-based SFC.
	   It does not represent IETF consensus and is presented here so that
	   the SFC community may benefit from considering this mechanism and
	   the possibility of its use in the edge data centers.
      
    
     
       
         Status of This Memo
         
            This document is not an Internet Standards Track specification; it is
            published for informational purposes.
        
         
            This is a contribution to the RFC Series, independently of any
            other RFC stream.  The RFC Editor has chosen to publish this
            document at its discretion and makes no statement about its value
            for implementation or deployment.  Documents approved for
            publication by the RFC Editor are not candidates for any level of
            Internet Standard; see Section 2 of RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
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       Introduction
       
        The requirements on today's networks are very diverse, enabling
        multiple use cases such as the Internet of Things (IoT), Content
        Distribution, Gaming, and Network functions such as Cloud Radio Access
        Network (RAN) and 5G control planes based on a Service-Based
        Architecture (SBA). These services are deployed, provisioned, and managed
        using Cloud-based techniques as seen in the IT world. Virtualization
        of compute and storage resources is at the heart of providing (often
        web) services to end users with the ability to quickly provision
        virtualized service endpoints through, e.g., container-based
        techniques. This creates the ability to dynamically compose new
        services from existing services. It also allows an operator to move a
        service instance in response to user mobility or to change resource
	availability. When moving from a purely "distant cloud" model to one
        of localized micro data centers with regional, metro, or even street
        level, often called "edge" data centers, such virtualized service
        instances can be instantiated in topologically different locations
        with the overall "distant" data center now being transformed into a
        network of distributed ones.

The reaction of content providers, like Facebook, Google, NetFlix, and others,
is not just to rely on deploying content servers at the ingress of the
customer network. Instead, the trend is towards deploying multiple Point of
Presences (POPs) within the customer network, those POPs being connected
through proprietary mechanisms  
to push content.
      
       
        The Service Function Chaining (SFC) framework   allows network operators as well as service
        providers to compose new services by chaining individual "service
        functions". Such chains are expressed through explicit relationships
        of functional components (the SFs) realized through their direct Layer
        2 (e.g., Media Access Control (MAC) address) or Layer 3 (e.g., IP
        address) relationship as defined through next-hop information that is
        being defined by the network operator. See   for more background on SFC.
      
       
         In a dynamic service environment of distributed data centers such as
         the one outlined above, with the ability to create and recreate
         service endpoints frequently, the SFC framework requires
         reconfiguring the existing chain through information based on the new
         relationships, causing overhead in a number of components,
         specifically the orchestrator that initiates the initial SFC and any
         possible reconfiguration.
      
       
	
This document describes how such changes can be handled without involving the
initiation of new and reconfigured SFCs.  This is accomplished by lifting the
chaining relationship from Layer 2 and Layer 3 information to that of SF
"names", which can, for instance, be expressed as URIs.


In order to transparently support such named relationships, we propose to
embed the necessary functionality directly into the Service Function Forwarder
(SFF) as described in  . With that,
the SFF described in this document allows for keeping an existing SFC intact,
as described by its Service Function Path (SFP), while enabling the selection
of appropriate service function endpoint(s) during the traversal of packets
through the SFC. This document is an Independent Submission to the RFC
Editor. It is not an output of the IETF SFC WG.
      
    
     
       Terminology
       
    The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
      
    
     
       Example Use Case: 5G Control-Plane Services
       
	    We exemplify the need for chaining SFs at the level
	    of a service name through a use case stemming from the current
	    3GPP Release 16 work on Service Based Architecture (SBA)  ,  . In
	    this work, mobile network control planes are proposed to be
	    realized by replacing the traditional network function interfaces
	    with a fully service-based one. HTTP was chosen as the
	    application-layer protocol for exchanging suitable service
	    requests  . With this in mind, the
	    exchange between, for example, the 3GPP-defined (Rel. 15) Session
	    Management Function (SMF) and the Access and Mobility Management
	    Function (AMF) in a 5G control plane is being described as a set
	    of web-service-like requests that are, in turn, embedded into HTTP
	    requests. Hence, interactions in a 5G control plane can be
	    modeled based on SFCs where the relationship
	    is between the specific (IP-based) SF endpoints that
	    implement the necessary service endpoints in the SMF and AMF. The
	    SFs are exposed through URIs with work ongoing to
	    define the used naming conventions for such URIs.
      
       
	     This move from a network function model (in pre-Release 15
	     systems of 3GPP) to a service-based model is motivated through
	     the proliferation of data-center operations for mobile network
	     control-plane services. In other words, typical IT-based methods
	     to service provisioning, particularly that of virtualization of
	     entire compute resources, are envisioned to being used in future
	     operations of mobile networks.  Hence, operators of such future
	     mobile networks desire to virtualize SF endpoints and direct
	     (control-plane) traffic to the most appropriate current service
	     instance in the most appropriate (local) data center. Such a data
	     center is envisioned as being interconnected through a
	     software-defined wide area network (SD-WAN).  "Appropriate" here
	     can be defined by topological or geographical proximity of the
	     service initiator to the SF endpoint. Alternatively, network or
	     service instance compute load can be used to direct a request to
	     a more appropriate (in this case less loaded) instance to reduce
	     possible latency of the overall request. Such data-center-centric
	     operation is extended with the trend towards regionalization of
	     load through a "regional office" approach, where micro data
	     centers provide virtualizable resources that can be used in the
	     service execution, creating a larger degree of freedom when
	     choosing the "most appropriate" service endpoint for a particular
	     incoming service request.
      
       
	     While the move to a service-based model aligns well with the
	     framework of SFC, choosing the most appropriate service instance
	     at runtime requires so-called "rechaining" of the SFC since the
	     relationships in said SFC are defined through Layer 2 or Layer 3
	     identifiers, which, in turn, are likely to be different if the
	     chosen service instances reside in different parts of the network
	     (e.g., in a regional data center).
      
       
         Hence, when a traffic flow is forwarded over a service chain
         expressed as an SFC-compliant SFP, packets in the traffic flow are
         processed by the various SF instances, with each SF instance applying
         an SF prior to forwarding the packets to the next
         network node.

It is a service-layer concept and can possibly work over any Virtual network
layer and corresponding underlay network.  The underlay network can be IP or
alternatively any Layer 2 technology.

At the service layer, SFs are identified using a path identifier
and an index. Eventually, this index is translated to an IP address (or MAC
address) of the host where the SF is running. Because of this,
any change-of-service function instance is likely to require a change of the
path information since either the IP address (in the case of changing the
execution from one data center to another) or MAC address will change due to
the newly selected SF instance.
      
        Returning to our 5G control-plane example, a user's connection request to
 access an application server in the Internet may start with signaling in the
 control plane to set up user-plane bearers. The connection request may flow
 through SFs over a service chain in the control plane, as
 deployed by a network operator. Typical SFs in a 5G control plane may include
 "RAN termination / processing", "Slice Selection Function", "AMF", and
 "SMF". A "Network Slice" is a complete logical network including Radio Access
 Network (RAN) and Core Network (CN). Distinct RAN and CN Slices may exist. A
 device may access multiple Network Slices simultaneously through a single
 RAN. The device may provide Network Slice Selection Assistance Information
 (NSSAI) parameters to the network to help it select a RAN and a Core Network
 part of a slice instance. 

Part of the control plane, the Common Control Network Function (CCNF),
includes the Network Slice Selection Function (NSSF), which is in charge of
selecting core Network Slice instances.

The classifier, as described in SFC architecture, may reside in the user
terminal or at the Evolved Node B (eNB).  These SFs can be
configured to be part of an SFC. We can also say that some
of the configurations of the SFP may change at the execution
time. For example, the SMF may be relocated as the user moves and a new SMF
may be included in the SFP based on user location.   shows the example SFC described here.
      
       
         Mapping SFC onto Service Function Execution Points along a Service Function Path
         +------+   +---------+  +-----+   +-----+  
| User |   | Slice   |  |     |   |     |
| App  |-->| Control |->| AMF |-->| SMF |-->
| Fn   |   | Function|  |     |   |     |  
+------+   +---------+  +-----+   +-----+
      
    
     
       Background
         describes an architecture
	   for the specification, creation, and ongoing maintenance of SFCs.
	   It includes architectural concepts, principles, and components used
	   in the construction of composite services through deployment of
	   SFCs. In the following, we outline the parts of this SFC
	   architecture relevant for our proposed extension, followed by the
	   challenges with this current framework in the light of our example
	   use case.
      
       
         Relevant Part of SFC Architecture
         

		  The SFC architecture, as defined in  , describes architectural components such
		  as SF, classifier, and SFF. It describes the SFP as the
		  logical path of an SFC. Forwarding traffic along such an SFP
		  is the responsibility of the SFF. For this, the SFFs in a
		  network maintain the requisite SFP forwarding information.
		  Such SFP forwarding information is associated with a service
		  path identifier (SPI) that is used to uniquely identify an
		  SFP.  The service forwarding state is represented by the
		  Service Index (SI) and enables an SFF to identify which SFs
		  of a given SFP should be applied, and in what order. The SFF
		  also has information that allows it to forward packets to
		  the next SFF after applying local SFs.
        
         
		 The operational steps to forward traffic are then as follows:
		 Traffic arrives at an SFF from the network.  The SFF
		 determines the appropriate SF the traffic should be forwarded
		 to via information contained in the SFC encapsulation.  After
		 SF processing, the traffic is returned to the SFF and, if
		 needed, is forwarded to another SF associated with that SFF.
		 If there is another non-local hop (i.e., to an SF with a
		 different SFF) in the SFP, the SFF further encapsulates the
		 traffic in the appropriate network transport protocol and
		 delivers it to the network for delivery to the next SFF along
		 the path.  Related to this forwarding responsibility, an SFF
		 should be able to interact with metadata.
        
      
       
         Challenges with Current Framework
         
	   As outlined in previous sections, the SFP defines
	   an ordered sequence of specific SF instances being
	   used for the interaction between initiator and SFs
	   along the SFP. These SFs are addressed by IP (or any
	   L2/MAC) addresses and defined as next-hop information in the
	   network locator maps of traversing SFF nodes.
        
           
       As outlined in our use case, however, the service provider may want to
       provision SFC nodes based on dynamically spun-up SF
       instances so that these (now virtualized) SFs can be
       reached in the SFC domain using the SFC underlay layer.
        
           
       Following the original model of SFC, any change in a specific execution
       point for a specific SF along the SFP will require a
       change of the SFP information (since the new SF execution
       point likely carries different IP or L2 address information) and
       possibly even the next-hop information in SFFs along the SFP. In case
       the availability of new SF instances is rather dynamic
       (e.g., through the use of container-based virtualization techniques),
       the current model and realization of SFC could lead to reducing the
       flexibility of service providers and increasing the management
       complexity incurred by the frequent changes of (service) forwarding
       information in the respective SFF nodes. This is because any change of
       the SFP (and possibly next-hop info) will need to go through suitable
       management cycles.
        
         
	    To address these challenges through a suitable solution, we identify the following requirements:
 
        
         
           
			  Relations between Service Execution Points  MUST be
			  abstracted so that, from an SFP point of view, the
			  Logical Path never changes.
		   
           
			  Deriving the Service Execution Points from the
			  abstract SFP  SHOULD be fast and incur minimum delay.
		   
           
			  Identification of the Service Execution Points
			   SHOULD NOT use a combination of Layer 2 or Layer 3
			  mechanisms.
		   
        
           
       The next section outlines a solution to address the issue, allowing for
       keeping SFC information (represented in its SFP) intact while
       addressing the desired flexibility of the service provider.
        
      
    
     
       Name-Based Operation in SFF
       
         General Idea
         
	   The general idea is two pronged. Firstly, we elevate the definition
	   of an SFP onto the level of "name-based
	   interactions" rather than limiting SFPs to Layer 2 or Layer 3 information
	   only. Secondly, we extend the operations of the SFF to allow for
	   forwarding decisions that take into account such name-based
	   interaction while remaining backward compatible to the current SFC
	   architecture as defined in  . In the following sections, we outline these two
	   components of our solution.
        
         
	    If the next-hop information in the Network Locator Map (NLM) is
	    described using an L2/L3 identifier, the name-based SFF (nSFF) may
	    operate as described for (traditional) SFF, as defined in  .  On the other hand, if the
	    next-hop information in the NLM is described as a name, then the
	    nSFF operates as described in the following sections.
        
         
	    In the following sections, we outline the two components of our solution.
        
      
       
         Name-Based Service Function Path (nSFP)
         
		The existing SFC framework is defined in  .   outlines that the SFP information is
		representing path information based on Layer 2 or Layer 3
		information, i.e., MAC or IP addresses, causing the
		aforementioned frequent adaptations in cases of
		execution-point changes. Instead, we introduce the notion of a
		"name-based Service Function Path (nSFP)".
        
         
         In today's networking terms, any identifier can be treated as a name,
         but we will illustrate the realization of a "Name-based SFP" through
         extended SFF operations (see  ) based on URIs as names and
         HTTP as the protocol of exchanging information. Here, URIs are being
         used to name for an SF along the nSFP. Note
         that the nSFP approach is not restricted to HTTP (as the
         protocol) and URIs (as next-hop identifier within the SFP). Other
         identifiers such as an IP address itself can also be used and are
         interpreted as a "name" in the nSFP. IP addresses as well as fully
         qualified domain names forming complex URIs (uniform resource
         identifiers), such as www.example.com/service_name1, are all captured
         by the notion of "name" in this document.
		
        
         
        Generally, nSFPs are defined as an ordered sequence of the "name" of
        SFs, and a typical nSFP may look like: 192.0.x.x -> www.example.com
        -> www.example2.com/service1 -> www.example2.com/service2.
        
         
        Our use case in   can then be
        represented as an ordered named sequence. An example for a session
        initiation that involves an authentication procedure, this could look
        like 192.0.x.x -> smf.example.org/session_initiate ->
        amf.example.org/auth -> smf.example.org/session_complete ->
        192.0.x.x.  (Note that this example is only a conceptual one since the
        exact nature of any future SBA-based exchange of 5G control-plane
        functions is yet to be defined by standardization bodies such as
        3GPP).
        
         
        In accordance with our use case in  , any of these named
        services can potentially be realized through more than one replicated
        SF instance. This leads to making dynamic decisions on where to send
        packets along the SAME SFP information, being
        provided during the execution of the SFC.  Through elevating the SFP
        onto the notion of name-based interactions, the SFP will remain the
        same even if those specific execution points change for a specific
        service interaction.
        
         
        The following diagram in   describes this nSFP
        concept and the resulting mapping of those named interactions onto
        (possibly) replicated instances.
        
         
           Mapping SFC onto Service Function Execution Points along a Service Function Path Based on Virtualized Service Function Instance
            +---------------------------------------------------------------+
 |Service Layer                                                  |
 | 192.0.x.x --> www.example.com --> www.example2.com -->        |
 |                      ||              ||                       |
 +----------------------||--------------||-----------------------+
                        ||              ||
                        ||              ||
 +----------------------||--------------||-----------------------+
 |Underlay Network      \/              \/                       |
 |               +--+ +--+ +--+    +--+ +--+ +--+                |
 |               |  | |  | |  |    |  | |  | |  |                |
 |               +--+ +--+ +--+    +--+ +--+ +--+                |
 |               Compute and       Compute and                   |
 |               storage nodes     storage nodes                 |
 +---------------------------------------------------------------+
        
      
       
         Name-Based Network Locator Map (nNLM)
          
        In order to forward a packet within an nSFP, we need to
        extend the NLM as defined in  
        with the ability to consider name relations based on URIs as well as
        high-level transport protocols such as HTTP for means of SFC packet
        forwarding. Another example for SFC packet forwarding could be that of
        Constrained Application Protocol (CoAP).
        
            
         The extended NLM or name-based Network Locator Map
         (nNLM) is shown in   as an example for www.example.com being
         part of the nSFP. Such extended nNLM is stored at each SFF throughout
         the SFC domain with suitable information populated to the nNLM during
         the configuration phase.
        
         
           Name-Based Network Locator Map
           
             
               SPI
               SI
               Next Hop(s)
               Transport Encapsulation (TE)
            
          
           
             
               10
               255
               192.0.2.1
               VXLAN-gpe
            
             
               10
               254
               198.51.100.10
               GRE
            
             
               10
               253
               www.example.com
               HTTP
            
             
               40
               251
               198.51.100.15
               GRE
            
             
               50
               200
               01:23:45:67:89:ab
               Ethernet
            
             
               15
               212
               Null (end of path)
               None
            
          
        
         
	    Alternatively, the extended NLM may be defined with implicit name
	    information rather than explicit URIs as in  . In the example of  , the next hop is represented
	    as a generic HTTP service without a specific URI being identified
	    in the extended NLM. In this scenario, the SFF
	    forwards the packet based on parsing the HTTP request in order to
	    identify the host name or URI. It retrieves the URI and may apply
	    policy information to determine the destination host/service.
        
         
           Name-Based Network Locator Map with Implicit Name Information
           
             
               SPI
               SI
               Next Hop(s)
               Transport Encapsulation (TE)
            
          
           
             
               10
               255
               192.0.2.1
               VXLAN-gpe
            
             
               10
               254
               198.51.100.10
               GRE
            
             
               10
               253
               HTTP Service
               HTTP
            
             
               40
               251
               198.51.100.15
               GRE
            
             
               50
               200
               01:23:45:67:89:ab
               Ethernet
            
             
               15
               212
               Null (end of path)
               None
            
          
        
      
       
         Name-Based Service Function Forwarder (nSFF)
         
	     It is desirable to extend the SFF of the SFC underlay to handle
	     nSFPs transparently and without the need to insert any SF into
	     the nSFP. Such extended nSFFs would then be responsible
	     for forwarding a packet in the SFC domain as per the definition
	     of the (extended) nSFP.
        
         	 
        In our example realization for an extended SFF, the solution
        described in this document uses HTTP as the protocol of forwarding SFC
        packets to the next (name-based) hop in the nSFP.

	The URI in the HTTP transaction is the name in our nSFP information,
	which will be used for name-based forwarding.
        
            
        Following our reasoning so far, HTTP requests (and more specifically,
        the plaintext-encoded requests above) are the equivalent of packets
        that enter the SFC domain. In the existing SFC framework, an
        IP payload is typically assumed to be a packet entering the SFC domain. This
        packet is forwarded to destination nodes using the L2
        encapsulation. Any layer 2 network can be used as an underlay
        network. This notion is now extended to packets being possibly part of
        an entire higher-layer application such as HTTP requests. The handling
        of any intermediate layers, such as TCP and IP, is left to the realization
        of the (extended) SFF operations towards the next (named) hop. For
        this, we will first outline the general lifecycle of an SFC packet in
        the following subsection, followed by two examples for determining
        next-hop information in  , finished up by a layered view on
        the realization of the nSFF in  .
        
      
       
         High-Level Architecture
         
           High-Level Architecture
           
+----------+
| SF1      |                 +--------+                  +------+ 
| instance |\                |   NR   |                  | SF2  | 
+----------+ \               +--------+                  +------+ 
              \                  ||                         ||
+------------+ \ +-------+   +---------+   +---------+   +-------+
| Classifier |---| nSFF1 |---|Forwarder|---|Forwarder|---| nSFF2 |    
+------------+   +-------+   +---------+   +---------+   +-------+
                                                            ||
                                                        +----------+ 
                                                        | Boundary |
                                                        |  node    |
                                                        +----------+
        
         
	    The high-level architecture for name-based operation shown in
	      is very similar to the
	    SFC architecture as described in  . Two new functions are introduced, as shown in
	    the above diagram: namely, the nSFF and the Name Resolver (NR).
        
         
		The nSFF is an extension of the existing SFF and is capable of
		processing SFC packets based on nNLM information, determining
		the next SF where the packet should be forwarded, and the
		required transport encapsulation (TE). Like standard SFF operation,
		it adds TE to the SFC packet and forwards
		it.
        
         
		The NR is a new functional component, capable of
		identifying the execution endpoints, where a "named SF" is
		running, triggered by suitable resolution requests sent by the
		nSFF. Though this is similar to DNS function, it is not
		same. It does not use DNS protocols or data records. A new
		procedure to determine the suitable routing/forwarding
		information towards the nSFF serving the next
		hop of the SFP is used. The details are
		described later.
        
         
        The other functional components, such as classifier and SF, are the same as
        described in SFC architecture, as defined in  , while the Forwarders shown in the above diagram are traditional
        Layer 2 switches.
        
      
       
         Operational Steps
         
		 In the proposed solution, the operations are realized by the
		 name-based SFF, called "nSFF". We utilize the high-level
		 architecture in  
		 to describe the traversal between two SF
		 instances of an nSFP-based transaction in an example chain
		 of: 192.0.x.x -> SF1 (www.example.com) -> SF2
		 (www.example2.com) -> SF3 -> ...
        
         Service Function 3 (SF3) is assumed to be a classical SF;
hence, existing SFC mechanisms can be used to reach it and will not be
considered in this example.
        
         
         According to the SFC lifecycle, as defined in  , based on our example chain above, the traffic
         originates from a classifier or another SFF on the left. The traffic
         is processed by the incoming nSFF1 (on the left side) through the
         following steps. The traffic exits at nSFF2.
        
         
           
            
		     At nSFF1, the following nNLM is assumed:
        
         
           nNLM at nSFF1
           
             
               SPI
               SI
               Next Hop(s)
               Transport Encapsulation (TE)
            
          
           
             
               10
               255
               192.0.2.1
               VXLAN-gpe
            
             
               10
               254
               198.51.100.10
               GRE
            
             
               10
               253
               www.example.com
               HTTP
            
             
               10
               252
               www.example2.com
               HTTP
            
             
               40
               251
               198.51.100.15
               GRE
            
             
               50
               200
               01:23:45:67:89:ab 
               Ethernet
            
             
               15
               212
               Null (end of path)
               None
            
          
        
         
           nSFF1 removes the previous transport
		   encapsulation (TE) for any traffic originating from another
		   SFF or classifier (traffic from an SF instance does not
		   carry any TE and is therefore directly processed at the
		   nSFF).
		   
           
		    nSFF1 then processes the Network Service Header (NSH)
		    information, as defined in  , to identify the next SF at the nSFP
		    level by mapping the NSH information to the appropriate
		    entry in its nNLM (see  ) based on the provided SPI/SI
		    information in the NSH (see  ) in order to determine the name-based
		    identifier of the next-hop SF. With such nNLM in mind, the
		    nSFF searches the map for SPI = 10 and SI = 253. It
		    identifies the next hop as = www.example.com and HTTP as
		    the protocol to be used. Given that the next hop resides
		    locally, the SFC packet is forwarded to the SF1 instance
		    of www.example.com. Note that the next hop could also be
		    identified from the provided HTTP request, if the next-hop
		    information was identified as a generic HTTP service, as
		    defined in  .
           
           
             The SF1 instance then processes the received SFC packet
             according to its service semantics and modifies the NSH by
             setting SPI = 10 and SI = 252 for forwarding the packet along the
             SFP. It then forwards the SFC packet to its local nSFF, i.e.,
             nSFF1.
		   
           nSFF1 processes the NSH of the SFC packet again,
		   now with the NSH modified (SPI = 10, SI = 252) by the SF1
		   instance. It retrieves the next-hop information from its
		   nNLM in   to be www.example2.com. Due to this SF
		   not being locally available, the nSFF consults any locally
		   available information regarding routing/forwarding towards
		   a suitable nSFF that can serve this next hop.
		   
           If such information exists, the Packet (plus the
         NSH information) is marked to be sent towards the nSFF serving the
         next hop based on such information in  Step 8.
           If such information does not exist, nSFF1
          consults the NR to determine the suitable routing/forwarding
          information towards the identified nSFF serving the next hop of the
          SFP.  For future SFC packets towards this next hop, such resolved
          information may be locally cached, avoiding contacting the NR for
          every SFC packet forwarding. The packet is now marked to be sent via
          the network in  Step 8.
		   
           Utilizing the forwarding information
	   determined in Steps  6 or  7, nSFF1 adds the suitable TE for
           the SFC packet before forwarding via the forwarders in the network
           towards the next nSFF22.
           
            When the Packet (+NSH+TE) arrives at the outgoing nSFF2, i.e., the
            nSFF serving the identified next hop of the SFP, it removes the TE
            and processes the NSH to identify the next-hop information. At
            nSFF2 the nNLM in   is
            assumed. Based on this nNLM and NSH information where SPI = 10 and
            SI = 252, nSFF2 identifies the next SF as www.example2.com.
            
        
         
           nNLM at SFF2
           
             
               SPI
               SI
               Next Hop(s)
               Transport Encapsulation (TE)
            
          
           
             
               10
               252
               www.example2.com
               HTTP
            
             
               40
               251
               198.51.100.15
               GRE
            
             
               50
               200
               01:23:45:67:89:ab
               Ethernet
            
             
               15
               212
               Null (end of path)
               None
            
          
        
         
           If the next hop is locally registered at the
		   nSFF, it forwards the packet (+NSH) to the SF
		   instance using suitable IP/MAC methods for doing so.
           If the next hop is not locally registered at the nSFF,
           the outgoing nSFF adds new TE information to the packet and
           forwards the packet (+NSH+TE) to the next SFF or boundary node, as
           shown in  .
        
      
    
     
       nSFF Forwarding Operations
       
		 This section outlines the realization of various nSFF
		 forwarding operations in  . Although the
		 operations in   utilize the notion of
		 name-based transactions in general, we exemplify the
		 operations here in   specifically for
		 HTTP-based transactions to ground our description into a
		 specific protocol for such name-based transaction. We will
		 refer to the various steps in each of the following
		 subsections.
      
       
         nSFF Protocol Layers
           shows the protocol layers based
 on the high-level architecture in  .
        
         
           Protocol Layers
           +-------+  +------+----+                              +----+-----+
|App    |  |      |    |   +--------+                 |    |     |
|HTTP   |  |-------->  |   |  NR    |                 |nSFF----->|--
|TCP    |->| TCP  |nSFF|   +---/\---+                 |    | TCP | |
|IP     |  | IP   |    |       ||                     |    | IP  | |
+-------+  +------+----+  +---------+   +---------+   +----------+ |
|   L2  |  |      L2   |->|Forwarder|-->|Forwarder|-->|   L2     | | 
+-------+  +------+----+  +---------+   +---------+   +----------+ | 
  SF1           nSFF1                                     nSFF2    |                             
                                              +-------+            |
                                              | App   |/           |
                                              | HTTP  | -----------+
                                              | TCP   |\
                                              | IP    |
                                              | L2    |
                                              +-------+
                                                SF2
        
         
	     The nSFF component here is shown as implementing a full
	     incoming/outgoing TCP/IP protocol stack towards the local SFs,
	     while implementing the nSFF-NR and nSFF-nSFF protocols based on
	     the descriptions in  .
        
            
		 For the exchange of HTTP-based SF transactions,
		 the nSFF terminates incoming TCP connections as well as
		 outgoing TCP connections to local SFs, e.g., the TCP
		 connection from SF1 terminates at nSFF1, and nSFF1 may store
		 the connection information such as socket information. It
		 also maintains the mapping information for the HTTP request
		 such as originating SF, destination SF, and socket ID. nSFF1
		 may implement sending keep-alive messages over the socket to
		 maintain the connection to SF1. Upon arrival of an HTTP
		 request from SF1, nSFF1 extracts the HTTP Request and
		 forwards it towards the next node as outlined in  . Any returning response is mapped onto the suitable open
		 socket (for the original request) and sent towards SF1.
        
         
	     At the outgoing nSFF2, the destination SF2/Host is identified
	     from the HTTP request message. If no TCP connection exists to the
	     SF2, a new TCP connection is opened towards the destination SF2
	     and the HTTP request is sent over said TCP connection. The nSFF2
	     may also save the TCP connection information (such as socket
	     information) and maintain the mapping of the socket information
	     to the destination SF2. When an HTTP response is received from
	     SF2 over the TCP connection, nSFF2 extracts the HTTP response,
	     which is forwarded to the next node. nSFF2 may maintain the TCP
	     connection through keep-alive messages.
	   
        
      
       
         nSFF Operations
         
          In this section, we present three key aspects of operations for the
          realization of the steps in  , namely, (i) the registration
          of local SFs (for  Step 3 in  ), (ii) the forwarding of SFC
          packets to and from local SFs (for Steps  3,   4, and  10 in
           ), (iii) the
	  forwarding to a remote SF (for Steps  5,  6, and  7 in  ) and to the NR as well as (iv) for the lookup
          of a suitable remote SF (for  Step 7 in  ). We also cover
          aspects of maintaining local lookup information for reducing lookup
          latency and other issues.
        
         
           Forwarding between nSFFs and nSFF-NRs
           
          Forwarding between the distributed nSFFs as well as between nSFFs and
          NRs is realized over the operator network via a path-based
          approach. A path-based approach utilizes path information provided
          by the source of the packet for forwarding said packet in the
          network. This is similar to segment routing albeit differing in the
          type of information provided for such source-based forwarding as
          described in this section. In this approach, the forwarding
          information to a remote nSFF or the NR is defined as a "path
          identifier" (pathID) of a defined length where said length field
          indicates the full pathID length. The payload of the packet is
          defined by the various operations outlined in the following
          subsections, resulting in an overall packet being transmitted. With
          this, the generic forwarding format (GFF) for transport over the
          operator network is defined in   with the length field
          defining the length of the pathID provided.
          
           
             Generic Forwarding Format (GFF)
             
+---------+-----------------+------------------------//------------+
|         |                 |                       //             |
| Length  | Path ID         |  Payload             //              |
|(12 bits)|                 |                     //               |
+---------+-----------------+--------------------//----------------+
          
           
             
            Length (12 bits): Defines the length of the pathID, i.e., up to 4096 bits
          
             
		   Path ID: Variable-length bit field derived from
		   IPv6 source and destination address
		  
          
           
		  For the pathID information, solutions such as those in   can be used. Here, the
		  IPv6 source and destination addresses are used to realize a
		  so-called path-based forwarding from the incoming to the
		  outgoing nSFF or the NR. The forwarders in   are realized via SDN
		  (software-defined networking) switches, implementing an
		  AND/CMP operation based on arbitrary wildcard matching over
		  the IPv6 source and destination addresses as outlined in
		   . Note that in the
		  case of using IPv6 address information for path-based
		  forwarding, the step of removing the TE
		  at the outgoing nSFF in   is realized by utilizing the provided
		  (existing) IP header (which was used for the purpose of the
		  path-based forwarding in  ) for the purpose of next-hop forwarding
		  such as that of IP-based routing. As described in  Step 8 of the extended
		  nSFF operations, this forwarding information is used as
		  traffic encapsulation. With the forwarding information
		  utilizing existing IPv6 information, IP headers are utilized
		  as TE in this case.

		  The next-hop nSFF (see  ) will restore the IP header of the packet
		  with the relevant IP information used to forward the SFC
		  packet to SF2, or it will create suitable TE information to
		  forward the information to another nSFF or boundary
		  node. Forwarding operations at the intermediary forwarders,
		  i.e., SDN switches, examine the pathID information through a
		  flow-matching rule in which a specific switch-local output
		  port is represented through the specific assigned bit
		  position in the pathID. Upon a positive match in said rule,
		  the packet is forwarded on said output port.
          
           
		  Alternatively, the solution in   suggests using a so-called BIER
		  (Binary Indexed Explicit Replication) underlay. Here, the
		  nSFF would be realized at the ingress to the BIER underlay,
		  injecting the SFC packet header (plus the Network Service
		  Header (NSH)) with BIER-based traffic encapsulation into the
		  BIER underlay with each of the forwarders in   being realized as a so-called
		  Bit-Forwarding Router (BFR)  .
          
           
             Transport Protocol Considerations
             
		  Given that the proposed solution operates at the
		  "named-transaction" level, particularly for HTTP
		  transactions, forwarding between nSFFs and/or NRs
		   SHOULD be implemented via a transport
		  protocol between nSFFs and/or NRs in order to provide
		  reliability, segmentation of large GFF packets, and flow
		  control, with the GFF in   being the basic forwarding format for
		  this.
            
             
		  Note that the nSFFs act as TCP proxies at ingress and
		  egress, thus terminating incoming and initiating outgoing
		  HTTP sessions to SFs.
            
               shows the packet format being
		  used for the transmission of data, being adapted from the
		  TCP header. Segmentation of large transactions into single
		  transport protocol packets is realized through maintaining a
		  "Sequence number". A "Checksum" is calculated over a single
		  data packet with the ones-complement TCP checksum
		  calculation being used. The "Window Size" field indicates
		  the current maximum number of transport packets that are
		  allowed in-flight by the egress nSFF. A data packet is sent
		  without a "Data" field to indicate the end of the (e.g., HTTP)
		  transaction.
            
             
           Note that, in order to support future named transactions based on
           other application protocols, such as Constrained Application
           Protocol (CoAP), future versions of the transport protocol
            MAY introduce a "Type" field that indicates the type
           of application protocol being used between SF and nSFF with "Type"
           0x01 proposed for HTTP. This is being left for future study.
            
             
               Transport Protocol Data Packet Format
               
    +----------------------------------------------+
    |         16 bits       |        16 bits       |
    +----------------------------------------------+
    |              Sequence number                 |
    +----------------------------------------------+
    |       Checksum        |      Window Size     |
    +----------------------------------------------+
    |                      ...                     |
    |                Data (Optional)               |
    +----------------------------------------------+
            
             
		  Given the path-based forwarding being used between nSFFs,
		  the transport protocol between nSFFs utilizes negative
		  acknowledgements from the egress nSFF towards the ingress
		  nSFF. The transport protocol negative Acknowledgment
		  (NACK) packet carries the number
		  of NACKs as well as the specific sequence numbers being
		  indicated as lost in the "NACK number" field(s) as shown in
		   .
            
             
               Transport Protocol NACK Packet Format
               
    +-----------------------+----------------------+
    |         16 bits       |        16 bits       |
    +----------------------------------------------+
    |    Number of NACKs    |                      +
    +----------------------------------------------+
    |                   NACK number                |
    +----------------------------------------------+
    +                ... NACK number               +
    +----------------------------------------------+
            
             
        If the indicated number of NACKs in a received NACK packet is
        nonzero, the ingress nSFF will retransmit all sequence numbers
        signaled in the packet while decreasing its congestion window size
        for future transmissions.
            
             
        If the indicated number of NACKs in a received NACK packet is zero, it
        will indicate the current congestion window as being successfully (and
        completely) being transmitted, increasing the congestion window size
        if smaller than the advertised "Window Size" in  .
            
             
        The maintenance of the congestion window is subject to realization at
        the ingress nSFF and left for further study in nSFF realizations.
            
          
        
         
           SF Registration
           
		   As outlined in Steps  3 and  10 of  ,
		   the nSFF needs to determine if the SF derived from the
		   Name-Based Network Locator (nNLM) is locally reachable or
		   whether the packet needs to be forwarded to a remote SFF. For
		   this, a registration mechanism is provided for such local
		   SF with the local nSFF. Two mechanisms can be used for
		   this:
          
           
             
            SF-initiated: We assume that the SF registers its Fully Qualified
            Domain Name (FQDN) to the local nSFF. As local mechanisms, we
            foresee that either a Representational State Transfer (REST-based) interface over the link-local
            link or configuration of the nSFF (through configuration files or
            management consoles) can be utilized.  Such local registration
            events lead to the nSFF registering the given FQDN with the NR in
            combination with a system-unique nSFF identifier that is being
            used for path-computation purposes in the NR.  For the
            registration, the packet format in   is used (inserted as the payload in the GFF of
              with the pathID
            towards the NR).
            
          
           
             
               
                 
                   
                     
                       
                         Registration Packet Format
                         +---------+------------------+----------------+
|         |                  |                |
|   R/D   |    hash(FQDN)    |    nSFF_ID     |
| (1 bit) |    (16 bits)     |    (8 bits)    |
+---------+------------------+----------------+
                      
                       
                         
               R/D: 1-bit length (0 for Register, 1 for Deregister)
            
                         
	       hash(FQDN): 16-bit length for a hash over the FQDN of the SF
		    
                         
	       nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF 
	   
                      
                    
                  
                
                 
                   
                     
We assume that the pathID towards the NR is known to the nSFF through configuration means.     

                               
The NR maintains an internal table that associates the hash(FQDN), the nSFF_id
information, as well as the pathID information being used for communication
between nSFFs and NRs. The nSFF locally maintains a mapping of registered FQDNs
to IP addresses for the latter using link-local private IP addresses.          

                  
                
              
            
          
           
             
		    Orchestration-based: In this mechanism, we assume that SFC
		    to be orchestrated and the chain to be provided through an
		    orchestration template with FQDN information associated to
		    a compute/storage resource that is being deployed by the
		    orchestrator. We also assume knowledge at the orchestrator
		    of the resource topology. Based on this, the orchestrator
		    can now use the same REST-based protocol defined in option
		    1 to instruct the NR to register the given FQDN, as
		    provided in the template, at the nSFF it has identified as
		    being the locally servicing nSFF, provided as the
		    system-unique nSFF identifier.
		  
          
        
         
           Local SF Forwarding
           
		   There are two cases of local SF forwarding, namely, the SF
		   sending an SFC packet to the local nSFF (incoming requests)
		   or the nSFF sending a packet to the SF (outgoing requests)
		   as part of Steps  3 and  10 in  . In the following,
		   we outline the operation for HTTP as an example-named
		   transaction.
          
           
            As shown in  , incoming HTTP requests from SFs are
            extracted by terminating the incoming TCP connection at their
            local nSFFs at the TCP level. The nSFF  MUST maintain a mapping of
            open TCP sockets to HTTP requests (utilizing the URI of the
            request) for HTTP response association.
          
           
		    For outgoing HTTP requests, the nSFF utilizes the
		    maintained mapping of locally registered FQDNs to
		    link-local IP addresses (see  , option
		    1). Hence, upon receiving an SFC packet from a remote nSFF
		    (in  Step 9 of  ), the nSFF determines the local
		    existence of the SF through the registration mechanisms in
		     . If said SF does exist locally, the HTTP
		    (+NSH) packet, after stripping the TE, is sent to the
		    local SF as  Step 10 in   via a TCP-level
		    connection. Outgoing nSFFs  SHOULD keep TCP connections open
		    to local SFs for improving SFC packet delivery in
		    subsequent transactions.
          
        
         
           Handling of HTTP Responses
           
		   When executing Steps  3 and  10 in  , the SFC packet
		   will be delivered to the locally registered next hop. As
		   part of the HTTP protocol, responses to the HTTP request
		   will need to be delivered on the return path to the
		   originating nSFF (i.e., the previous hop). For this, the
		   nSFF maintains a list of link-local connection information,
		   e.g., sockets to the local SF and the pathID on which the
		   request was received. Once receiving the response, nSFF
		   consults the table to determine the pathID of the original
		   request, forming a suitable GFF-based packet to be returned
		   to the previous nSFF.
          
           
            When receiving the HTTP response at the previous nSFF, the nSFF
            consults the table of (locally) open sockets to determine the
            suitable local SF connection, mapping the received HTTP response
            URI to the stored request URI. Utilizing the found socket, the
            HTTP response is forwarded to the locally registered SF.
          
        
         
           Remote SF Forwarding
           
		   In Steps  5,  6,  7, and  8 of  , an SFC
		   packet is forwarded to a remote nSFF based on the nNLM
		   information for the next hop of the nSFP.   handles the case of suitable
		   forwarding information to the remote nSFF not existing,
		   therefore consulting the NR to obtain suitable information.
		     describes the maintenance
		   of forwarding information at the local nSFF.    describes the update of stale forwarding
		   information. Note that the forwarding described in   is used for the actual forwarding to the
		   various nSFF components.  Ultimately,  
		   describes the forwarding to the remote nSFF via the
		   forwarder network.
          
           
             Remote SF Discovery
             
		    The nSFF communicates with the NR for two purposes: namely,
		    the registration and discovery of FQDNs. The packet format
		    for the former was shown in   in
		     ,
		    while   outlines the packet format for the
		    discovery request.
            
             
               Discovery Packet Format
               
+--------------+-------------+ +--------+-----------------//--------+
|              |             | |        |                //         |
|   hash(FQDN) |  nSFF_ID    | | Length | pathID        //          |
|   (16 bits)  |  (8 bits)   | |(4 bits)|              //           |     
+--------------+-------------+ +--------+-------------//------------+
        Path Request                     Path Response
            
             
           For Path Request:
            
             
               
               hash(FQDN): 16-bit length for a hash over the FQDN of the SF
            
               
	       nSFF_ID: 8-bit length for a system-unique identifier for the SFF related to the SF
		    
            
             
           For Path Response: 
            
             
               
               Length: 4-bit length that defines the length of the pathID
            
               
	       Path ID: Variable-length bit field derived from IPv6 source
	       and destination address
		    
            
             
           A path to a specific FQDN is requested by sending a hash of the
           FQDN to the NR together with its nSFF_id, receiving as a response a
           pathID with a length identifier. The NR  SHOULD maintain a table of
           discovery requests that map discovered (hash of) FQDN to the
           nSFF_id that requested it and the pathID that is being calculated
           as a result of the discovery request.
            
             
            The discovery request for an FQDN that has not previously been
            served at the nSFF (or for an FQDN whose pathID information has
            been flushed as a result of the update operations in  ) results in an initial latency
            incurred by this discovery through the NR, while any SFC packet
            sent over the same SFP in a subsequent transaction will utilize
            the nSFF-local mapping table. Such initial latency can be avoided
            by prepopulating the FQDN-pathID mapping proactively as part of
            the overall orchestration procedure, e.g., alongside the
            distribution of the nNLM information to the nSFF.
            
          
           
             Maintaining Forwarding Information at Local nSFF
             
		    Each nSFF  MUST maintain an internal table
		    that maps the (hash of the) FQDN information to a suitable
		    pathID. As outlined in  Step 7 of  , if a suitable entry does not exist for
		    a given FQDN, the pathID information is requested with the
		    operations in  
		    and the suitable entry is locally created upon receiving a
		    reply with the forwarding operation being executed as
		    described in  .
            
             
            If such an entry does exist (i.e.,  Step 6 of  ), the pathID
            is locally retrieved and used for the forwarding operation in
             .
            
          
           
             Updating Forwarding Information at nSFF
             
	        The forwarding information maintained at each nSFF (see
	         ) might need to be updated for three reasons:
            
             
               
			  An existing SF is no longer reachable: In this case,
			  the nSFF with which the SF is locally registered
			  deregisters the SF explicitly at the NR by sending
			  the packet in   with the hashed FQDN and the R/D
			  bit set to 1 (for deregister).
		   
               
			 Another SF instance has become reachable in the
			 network (and, therefore, might provide a better
			 alternative to the existing SF): In this case, the NR
			 has received another packet with a format defined in
			   but a different nSFF_id value.
		   
               
			  Links along paths might no longer be reachable: The
			  NR might use a suitable southbound interface to
			  transport networks to detect link failures, which it
			  associates to the appropriate pathID bit position.
		   
            
             
            For this purpose, the packet format in   is sent from the
            NR to all affected nSFFs, using the generic format in  .
            
             
               Path Update Format
               
+---------+-----------------+--------------//----+
|         |                 |             //     |
|   Type  |     #IDs        |  IDs       //      |
| (1 bit) |    (8 bits)     |           //       |
+---------+-----------------+----------//--------+
            
             
               
               Type: 1-bit length (0 for Nsff ID, 1 for Link ID)
            
               
		       #IDs: 8-bit length for number of IDs in the list
		    
               
			  IDs: List of IDs (Nsff ID or Link ID)
			
            
             
			The pathID to the affected nSFFs is computed as the
			binary OR over all pathIDs to those nSFF_ids affected
			where the pathID information to the affected nSFF_id
			values is determined from the NR-local table
			maintained in the registration/deregistration
			operation of  .
            
             
            The pathID may include the type of information being updated
            (e.g., node identifiers of leaf nodes or link identifiers for
            removed links). The node identifier itself may be a special
            identifier to signal "ALL NODES" as being affected.  The node
            identifier may signal changes to the network that are substantial
            (e.g., parallel link failures).  The node identifier may trigger
            (e.g., recommend) purging of the entire path table (e.g., rather
            than the selective removal of a few nodes only).
            
             
           It will include the information according to the type.  The
           included information may also be related to the type and length
           information for the number of identifiers being provided.
            
             
            In cases 1 and 2, the Type bit is set to 1 (type nSFF_id) and the
            affected nSFFs are determined by those nSFFs that have previously
            sent SF discovery requests, utilizing the optional table mapping
            previously registered FQDNs to nSFF_id values. If no table mapping
            the (hash of) FQDN to nSFF_id is maintained, the update is sent to
            all nSFFs.  Upon receiving the path update at the affected nSFF,
            all appropriate nSFF-local mapping entries to pathIDs for the
            hash(FQDN) identifiers provided will be removed, leading to a new
            NR discovery request at the next remote nSFF forwarding to the
            appropriate FQDN.
            
             
            In case 3, the Type bit is set to 0 (type linkID) and the affected
            nSFFs are determined by those nSFFs whose discovery requests have
            previously resulted in pathIDs that include the affected link,
            utilizing the optional table mapping previously registered FQDNs
            to pathID values (see  ). Upon receiving the node
            identifier information in the path update, the affected nSFF will
            check its internal table that maps FQDNs to pathIDs to determine
            those pathIDs affected by the link problems and remove path
            information that includes the received node identifier(s). For
            this, the pathID entries of said table are checked against the
            linkID values provided in the ID entry of the path update through
            a binary AND/CMP operation to check the inclusion of the link in
            the pathIDs to the FQDNs. If any pathID is affected, the
            FQDN-pathID entry is removed, leading to a new NR discovery
            request at the next remote nSFF forwarding to the appropriate
            FQDN.
            
          
           
             Forwarding to Remote nSFF
             
		    Once Steps  5,  6, and  7 in   are being executed,
		     Step 8 finally sends the SFC packet to the remote nSFF,
		    utilizing the pathID returned in the discovery request
		    ( ) or retrieved from the local pathID
		    mapping table. The SFC packet is placed in the payload of
		    the generic forwarding format in   together with
		    the pathID, and the nSFF eventually executes the forwarding
		    operations in  .
            
          
        
      
    
     
       IANA Considerations
       This document has no IANA actions. 
      
    
     
       Security Considerations
       Sections   and   describe the forwarding of SFC
      packets between named SFs based on URIs exchanged in HTTP messages.
      Security is needed to protect the communications between originating
      node and Ssff, between one Nsff and the next Nsff, and between Nsff and
      destination. TLS is sufficient for this and  SHOULD be used. The TLS
      handshake allows to determine the FQDN, which, in turn, is enough for the
      service routing decision. Supporting TLS also allows the possibility of
      HTTPS-based transactions.
        It should be noted (per  ) that what a URI resolves to is not
necessarily stable.  This can allow flexibility in deployment, as described in
this document, but may also result in unexpected behavior and could provide an
attack vector as the resolution of a URI could be "hijacked" resulting in
packets being steered to the wrong place.  This could be particularly
important if the SFC is intended to send packets for processing at security
functions.  Such hijacking is a new attack surface introduced by using a
separate NR.
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