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Abstract

Contour treeshave beenusedin geagraphic information
systemgGIS) and medicalimaging to displayscalar data.
Contous are only definedfor continuousfunctions. For

an image representedy discrete data, a continuousfunc-
tion is first definedas an interpolation of the data. Then
the contourtreeis definedon this continuousfunction. In

this paper we introducea new concepttermedmonotonic
line, which is directly definedon discretedata. All mono-
tonic linesin an image form a treg called monotonictree

Ascompaedwith contourtrees,monotonidreesavoidthe
stepof interpolation,thuscanbe computednore efficiently.

Monotonictree can be reduced. The reducedmonotonic
tree can also be usedas a hierarchical representationof
image structues in image processing In particular, we
demonstateits applicationonimage smoothingandtexture
retrieval. Experimentshowthat our smoothingschemeis

successfuih both noisereductionandtexture retrieval.

1 Intr oduction

1.1 Contour tree

The conceptsof contour trees have been developed by
Morse[11], Roubaland Poiker [12], andrecentlyby van
Kreveld et al. [17]. In geographicinformation systems
(GIS), contourtreesareusedto displayscalardatadefined
over the plane,or the three-dimensionatpace.For exam-
ple,theelevationin thelandscape&anbe modeledby scalar
dataover the plane, wherea contour (also called an iso-
line) isaline wheretheelevationfunctionassumethesame
value. Contourtreesare alsousedin medicalimagingto
show the scannediata.

The exampleshown in Figure 1 is taken from [17]. In
this example,the input datasetis modeledby 2D triangle
meshwith linear interpolation. The contoursof all critical
verticesin the meshsubdiide the 2D domaininto regions.
Everyregionbetweercontourss boundedy two contours.
To constructthe contourtree, eachcontourin the subdvi-
sioncorrespondso a nodein the graph,andtwo nodesare
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Figurel: An exampleof 2D contourtree.

connectedfrom maxto min) if thereis a region bounded
by their correspondingontours.This graphis atree,which
is easyto shaw [3, 16], andit is calledthecontourtree.

In generaljfor ary continuousfunction f : R¢ — R, a
contouris definedto bea connectedomponentf thelevel
set{z € R?|f(x) = v} for somev € R. For generafunc-
tions,contouramaybed-dimensional(d — 1)-dimensional,
or lower dimensional.For Morsefunctionsdefinedon R?,
contoursare either (d — 1)-dimensionalhypersuraces(if
they arenormalcontours)or isolatedpoints(if they arede-
generateontours).A functionwhosecritical pointsareiso-
latedis calleda Morsefunction

Contoursareonly definedfor continuousunctions. For
animagerepresentedby discretedata,a continuousfunc-
tion is first definedasaninterpolationof the data. Thenthe
contourtreeis definedon this continuousfunction. In this
paper we introducea new concepttermedmonotonicline,
whichis directly definedon discretedata.

1.2 Monotonic tree

We obsenethatfor any 2D Morsefunction,acurveisanor-
mal contourwith valuew iff it's aboundaryof theset{xz €
R?|f(z) > v}. Thisis nottrue for non-Morsefunctions.
However, the equivalentconditionis moregeneralandcan
be usedto define contoursof discontinuousfunctions or



discretefunctions. For animagerepresentetby a discrete
functionf : {0,1,....M -1} x{0,1,..., N -1} - Rand
somevaluev, aboundaryl of theset{z € Z?|f(z) > v}
is alwaysclosedandhassuchapropertythatthefunctionis
monotonicfrom onesideof [ to theotherside,i.e., eitherof
following is true:

(1) thefunction f assumewalueshigherthanv at pixels
adjacento the interior side of [, and valuesno more
thanv atpixelsadjacento theexteriorsideof {. In this
case] is calledanoutwad-falling monotoniccontour
or monotonicline;

(2) thefunction assumewaluesno morethanwv at pixels
adjacento theinterior sideof [, andvalueshigherthan
v atpixelsadjacento theexteriorsideof . In thiscase,
[ is calledan outwaid-climbingmonotoniccontouror
monotonidine.

Figure 2(a) givesan exampleof outward-falling mono-
tonicline. Thetwo kinds of monotoniclines correspondo
positive and negative contourlinesin [11]. However, our
definition works for discontinuousfunctionsand discrete
functions. To make the boundaryof the domainrectangle
amonotonidine, we extendtheinputfunctionto thewhole
planeZ? suchthatthe extendedfunction assumes-oo out
of the domainrectangle. It canbe proved that monotonic
linesdon’t crosseachother i.e.,if I; = 0X, 1y = 9Y are
two monotonidines,whereX, Y aretwo simply connected
regions,thenX C YV, Y C X or XY = . Based
on this property we candefinea parent-childrelationship:
monotonicline Iy is the parentof monotonicline I, if I5
is directly enclosedy ;. Underthis parent-childrelation-
ship, all monotoniclinesin animageform a rootedtree,
calledmonotonictree For example,all monotoniclinesin
Figure2(b) form a monotonictreeshovn in Figure2(c).

A monotonictreecanbereduced.A maximalsequence
of uniquelyenclosingnonotonidinesis calledamonotonic
slope All monotonicslopesin animageform a reduced
monotonidree SeeFigure2(d).

Algorithms for computingtraditional contourtreescan
be easilymodifiedto computemonotonictreesor reduced
monotonictrees. Becausethe monotonicline is directly
definedon pixels, the interpolationstepis avoided. Thus
themonotonictreesandthereducednonotonictreescanbe
computednoreefficiently.

1.3 Multiscale, Noise and Texture in Image
Processing

Multiscale (or multi-resolution)is one main methodology
in imageprocessingImageshave differentfeaturesat dif-
ferentscales. As Lindebeg saidin [9], “... every opena-
tion onimage datamustbe carried outon a window whose
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Figure2: (a) An outward-falling monotonicline, (b) a set
of monotoniclines, (c) the monotonictree, (d) the reduced
monotonictree.

sizecanrange froma singlepoint to thewholeimage. The
type of information we can get from suc an opemtion is
largely determinedby the relationshipshetweerstructuies
in the image and the size of the window Hence without
prior knowled@ aboutwhatwe are lookingfor, ther is no
reasonto favor any particular scale We shouldtherefore
try themall and operate at all window sizes. Sincethe
type of informationwe cangetfrom a window-basecbper
ationis alsolargely determinedy therelationshipbetween
the shapeof the structuresn the imageandthe shapeof
the window, we shouldalsotry all window shapeswhich
will make the window-basedoperationsnot efficient. We
may wonder: can we get the structuresof an image di-
rectly? Thereducedmonotonictreeof animageis oneap-
proachto retrieving and representinghe structuresof the
imagehierarchically Eachbranch(i.e., subtree)of the re-
ducedmonotonictreerepresents structure wherethe sub-
branchesre substructuresAs comparedvith othermulti-
scaletechniquessuch as wavelet, the reducedmonotonic
tree retrieves the image structuresdirectly and maintains
their original shapesFor thewavelet-basedechniqueghe
featuresareretrievedthroughoperationsuchasconvolving
with themotherwaveletsat differentscalesthusthe shapes
of correspondingtructuresaretransformedandsometimes
lostin theretrievedfeatures.

In this paperwe addresshe problemsof imagesmooth-
ing andtexture retrieval to demonstratehe applicationof
thereducedmonotonictree. Imagesmoothingor noisere-
moval, is one of the mostimportantdesigngoalsof image
enhancementExisting smoothingtechniquesnclude lin-
earfiltering suchasGaussiarsmoothingoperationnonlin-



earfiltering suchasKuwahardfilter [4], statisticalmethods
[8, 1], wavelet[6, 18], andPDEbasednethodg10, 7]. Tex-

ture is definedby Tamuraet al. [13] as“what constitutes
a macimoscopicregion. Its structure is simply attributedto

the repetitivepatternsin which elementsor primitivesare

arranged accoding to a placementrule” Texture analy-
sisschemedcludegeometricamethodg15], randomnfield

models[2], andwaveletmodels[5].

Noise in imagescorrespondgo high frequeng parts.
Usuallysodoestexture. In mary casesgxisting smoothing
techniquesemove or reduceboth noiseandtexture. While
moreeffort hasbeenmadeon imagesmoothingandtexture
analysisseparatelylesshasbeendoneto tell and handle
the differencebetweentexture and noise, especiallywhen
texture and noise are mixed togetherin oneimage. This
situationmakestexture retrieval difficult. On onehand,if
we don't apply smoothingalgorithmsfirst, the existenceof
noisein animageaffectsbadly the performanceof texture
analysisschemesn the image; on the other hand,if we
apply smoothingalgorithmsfirst, it's arisk thatthe texture
structureis alsoremoved or damagediuringthe procesof
smoothing.

The reducedmonotonictree providesa framein which
we canuniformly handleimagesmoothingandtexture re-
trieval. In a reducedmonotonictree, eachbranchrepre-
sentsa structure,whosescaleis determinedby the area
coveredby this branch. The fine scaledetail, which rep-
resentghe high frequeng partof theimage,consistsof all
branchesvhoseareasare no morethana scalethreshold.
Givenascalethresholdwe smooththeimageby cuttingall
branche®f thereducednonotonictreewhoseareasareno
morethanthethreshold.

Whatif the branchedeingcut areregularin shapeand
permutationj.e., they don't correspondo the noisepart of
theimage?In this case we gettexture. Essentiallythede-
tail in smallscaless eithertexture or noise. The main dif-
ferencebetweentexture and noiseis thatthe texture of an
objectis anintrinsic part of the object,consistingof repet-
itive patternswhich areregularin placementthe noiseis a
resultof outerforces,andusuallyis irregular. Therelation-
shipamongsmoothingtextureandmultiscaleis illustrated
in Figure3.

= finer scale structure
= noise or texture

low frequency part ]e
u

high frequency part ]

= coarser scale struct
= smoothed data

Figure3: Relationshipamongsmoothing texture andmul-
tiscale.

Our texture retrieval schemecan be classifiedas a ge-

ometric method. The classof geometrictexture analysis
methodsis characterizedy their definition of texture as
being composedf texture elementg14]. The texture el-
ementsarecalledtextons The maindifficulty of geometric
methodsds at the stepof texton retrieval. Oncethetextons
areidentifiedin the image,othertechniquesuchas point
patternrecognition shapeanalysisandstatisticcanbeused
to analyzethe featuresn the shapepatternsandplacement
of the textons. Basedon the reducedmonotonictree, for
a given scale,the structureat this scaleis representedby
a setof brancheqwhich cover disjoint regionsin the im-
age). If the branchest this scaleareregularin shapeand
permutationgachof themis atexton. Otherwise they rep-
resentthe noiseat this scale. Thusthe reducedmonotonic
treeprovidesafacility helpingusunderstandhedifference
betweertextureandnoise.

2 Representation of Boundaries of
Digital RegionsasCircular Lists
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Figure4: Boundarieof adigital regionunderdifferentcon-
nections.
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Figure5: (a) 6.1-neighbor®f pixel (1,1), (b) 4 pixel edges
of (1,1).

The boundaryof a digital region dependn whatkind
of pixel connectionis assumedn digital planeZ2. See
Figure4. Therearefour kinds of neighborsin the digital
plane: 4-neighborstwo 6-neighborsand 8-neighbors.In
this paperwe useonekind of 6-neighborsanddenoteit as
6.1-neighborsfor eachpixel (i, §), its 6.1-neighborscon-
SIStOf (laj_ 1)7 (7’7.7+1)7 (7’_17.7)7 (2+17])7 (1_17.7_1)!
and(i + 1,5 + 1). SeeFigure5(a). Two pixelsp,q are
called6.1-adjacent, if p = q or p is a6.1-neighborof q.
A sequencef pixels {p;}?_, is calleda 6.1-path, if for
all1 < i < n, p;, pi+1 are6.1-adjacent. For ary digital
region S andary p,q € S, p,q arecalled6.1-connected



in S if thereis a 6.1-pathin S connectingp, ¢. A digital
region S is called6.1-connectedif ary two pixelsin S are
6.1-connectedn S.

In digital geometry the boundaryof a digital region is
representedy the boundarypixels. We choosea differ-
entway andrepresent boundaryby acircularlist of pixel
edges.

Definition 2.1 Ead pixel (i, j) € Z? corresponddo a squae
inR?:

Square(i,j) =[i— 3, i+ 3] x[j— 3,7+ 1]
For pixel (i,j), we defineits pixel edges as the four edges of
Square(i, j). SeeFigure 5(b). More specifically we defineits
top pixel edge to be

tEde(j)={(z,j - 3)li—3 <@ <i+ 3},
its bottompixel edge to be
its left pixel edge to be

I-Edge (4, j) = {(i — 5,9)|i — 3 <y <j+ 3} and
its right pixel edge to be

r-Ede (4,5) = {(i+ 5. 9)li —3 <y <j+ 3}
Thefour edgesare also denotedas (i,j,top), (i,j,bottom), (i,j,left)
and(i,j,right), respectively Thesetof the four edgesare denoted
as EdgeSet(i,j). For any pixel edee e of pixel p, it'salsoan edge
of anotherpixel ¢, andwe definethe pixel setof e as:

PizelSet(e) = {p, q}.

Each pixel edge have two representations. For exam-
ple, the pixel edge (i, j,top) can also be representedas
(1,7 — 1, bottom).

Definition 2.2 Acircular list is a pair < X,next > sud
that X is afinite setand
(1) nextis a bijectivefunctionfromXto X; and
(2) Vz,y € X, there existsinteger n > 0 sud thatx =
next™(y), i.e., z = next(next(...(y))).

N————

n

Definition 2.3 For any set X C Z2, we definedX to
be the set of all pixel edges which are in the border,
ie, 0X = {e = (i,j,ename)|(i,j) € X;ename =
top, bottom, right, or le ft; and PizelSet(e) € X }.

We define the *“next” function on 09X as:
if (i,4) € X and (i, 5, top) € 8X, Newxty,(i,j,top) =
(i,4,left) f—-1,7-1)¢X,(i-1,5) ¢X;
(i — 1,5, top) ifi—-1,j-1)¢X (-1, €X;
(i—1,j—1,right) if(i—1,j—1)€ X;
if (i,§) € X and (i, j, bottom) € dX, Nexty,(i,j, bottom) =
(4,4, right) if(i+1,7+1)¢X,(i+1,5) € X;
(i +1,j,bottom) if(i+1,j+1) ¢ X,(i+1,7) € X;
(i+ 1,7+ 1left) if(i+1,j+1)€X;
if (i,4) € X and (i,5,left) € X, Nextd,(i,j,left) =
(i, 4, bottom) if (6,j +1) ¢ X;
(1,5 +1,left) if(,j+1)eX,(i—-1,j+1)¢€X;
(i—1,7+1,top) if(i,j+1)eX,(i—-1,j+1)€X;
if (i,4) € X and (i,5,right) € 8X, Nexty,(i,j,right) =
(i, 4, top) if (1,7 — 1) ¢ X;
(3,5 — 1,right) if(,j—1)eX,(i+1,j-1)¢X;
(i +1,5 — 1,bottom) if (6,5 — 1) € X,(i+1,5—1) € X.

In Figure4(b), Next, (o) = B and Next,(8) = 7.
It's easyto seethatVX C Z2 Nextf, is well defined.In
addition,vX C Z2 we have

(1) 60X =0(2* - X);

(2) NextZ X = (NextX,)~'; and

(3) if X isfinite, thendX canbedecomposeihto a
setof disjoint subsetqb;}7_; with n > 1 suchthateach<
bi, NextX,|s; > isacircularlist. Each< b;, Nextd,|p, >
is calledaboundary of X.

The property(2) above ensureghatfor a discretefunc-
tion f definedonZ?, andsomev € R, aboundaryof {z €
Z*|f(z) > v} is alsoaboundaryof {z € Z?|f(z) < v}.
This propertyis not held by 4- or 8-neighborconnections,
which is the reasonwhy we don’t choose4- or 8-neighbor
connectiongo definemonotoniclines.

For finite X, Next, definesadirectionondX: onthe
outerboundarythe directionis counterclockwise;andon
theinnerboundariesthe directionis clockwise.

Definition 2.4 AfinitesetX C Z?2is simply 6.1-connected
if bothX andZ? — X are6.1-connected.

Lemma 2.1 For a finite set X C Z2, X is simply 6.1-
connectedff < X, Next, > is a circular list. Thatis
to say for a finite digital set X, < X, Nexty, > is a
circular list iff bothX andZ?2 — X are 6.1-connected.

This lemmais an equivalentof Jordan$ curve theorem
in the digital plane. Dueto the limited spacejn this paper
we give our lemmasandtheoremswith proof omitted.

3 Definition and Property of Mono-
tonic Lines

Any gray image can be representediy a function f :
{0,1,..,.M -1} x {0,1,..., N — 1} — R. In this paper
it's assumedhat animageis alwaysrepresentedhis way.
Let’s extendthe functionto the whole planeZ2.

Definition 3.1 Let v, = —oo. ! For any function f :
{0,1,.... M —1}x{0,1,..., N—1} — R, wedefinetheex-
tended function of f to beafunctionF : Z? — RJ{v,}
sud that

[ fG,j) f0<i<M,0<j<N;
F(i,j) _{ Vo otherwise

DenoteF as Extension(f).

Definition 3.2 For anydigital region X C Z2, wedefine:
OutBorderPizelSetg 1 (X) = {z € Z% —

1n fact,we canchooseary v, whichis greatethanall valuesassumed
by f, or smallerthanall valuesassumedby f.




X |z is 6.1-adjacent with somey € X };
InBorderPizelSets1(X) = {z € X|z is 6.1-
adjacent with somey € Z> — X }.

Definition 3.3 For anyimagerepresentedbyfunctionf, let
Q beits domain,and F' beits extendedunction. A mono-
toniclineof f isaboundaryd X sudithatX C Qissimply
6.1-connectednd not empty and there existsv € R with
thepropertythat eitherof the following is true:

(1) Vz € InBorderPizelSets.1(X), F(x) > v, Vy €
OutBorderPizelSetg 1 (X), F(y) < v;

(2) Vz € InBorderPizelSets1(X),F(z) < v, Vy €
OutBorderPizelSetg 1 (X), F(y) > v.
If (1) is true, 0X is called outward falling; if (2) is true,
0X is called outward climbing. We denotethe setof all
monotonidinesof f as MonotonicLineSet(f).

Now we needto prove thatmonotoniclines don't cross
eachother Heretwo distinctmonotonidinesi, andi; don’t
crosseachotherdoesnt meani, (1, = @, sincethey can
intersectangentially SeeFigure6.

@ (b)

Figure6: (a)l, intersectd;, tangentially (b) I, crosses.

Theorem 3.1 Theorem of No Crossing Monatonic Lines

For anyimage representedy function f, andany 90X, dY
in MonotonicLineSet(f), oneof following mustbe true:
XCY,YCXorXNY =0.

4 Monotonic Tree and Reduced
Monotonic Tree

Now we can define

MonotonicLineSet(f).

Definition 4.1 For any image represented by func-
tion f and any distinct monotonic lines dX,9Y €
MonotonicLineSet(f), 0X encloses dY, denotedas
Enclose(0X,0Y),if X D Y.

0X directly encloses 9Y, denoted as
DirectEnclose(0X,0Y), if Enclose(0X,0Y) and
there is no 0Z € MonotonicLineSet(f) sud that
XDZDY.

relationships  on

The relationshipDirect Enclose is a parent-childrela-
tionshipon MonotonicLineSet(f).

Theorem4.1 For any image represented by
function f, let Q be its domain. Then <
MonotonicLineSet(f), DirectEnclose > is a rooted
tree and 9 is its root.

Definition 4.2 For any image representecby function f,
the tree < MonotonicLineSet(f), DirectEnclose >
is called the monotonic tree of f, denoted as
MonotonicTree(f).

Themonotonictreecanbereduced.

Definition 4.3 For any image represented by func-
tion f and any l,,l; € MonotonicLineSet(f), I,
uniquely  directly  encloses [, denoted as
UniqueDirectEnclose(lg, lp), if

(1) DirectEnclose(l,,1y); and

2 Vi, € MonotonicLineSet(f), if
DirectEnclose(l,, 1), thenly = I..

Definition 4.4 For any image representecby function f,

a monotonic sope s is a maximalsequencef monotonic
liness = {l;}?, withn > 1 suhthatVi =1,2,...,n —1,

UniqueDirectEnclose(l;,l;11). Thefirstmonotonicline

[, is calledthe enclosing line of the slopes. Thesetof all

monotonicslopess denotedas M onotonicSlopeSet(f).

It's easyto seethatfor two monotonicslopess, andsy in
animage,if s, # sp, thens, [ sy = .

Definition 4.5 For any image representedby function f
andanys,, sy € MonotonicSlopeSet(f), wedefine

(1) Enclose(sq,sp) if 3, € Sq, 3l €
sy, Enclose(la,1ly);
(2) DirectEnclose(sq,sp) if A, €  s4,3p €

sy, DirectEnclose(lq,lp).

The relationshipDirect Enclose is a parent-childrela-
tionshipon M onotonicSlopeSet(f).

Theorem4.2 For any image represented by
function f, let Q be its domain. Then <
MonotonicSlopeSet(f), DirectEnclose > is a rooted
tree and the monotonicslope which containsof is the
root.

Definition 4.6 For any image representedby function
f, < MonotonicSlopeSet(f), DirectEnclose > is
called the reduced monotonic tree of f, denotedas
ReducedM onotonicTree(f).

5 Image Smoothing and Texton Re-
trieval

In this section,we presenta smoothingschemebasedon
the reducedmonotonictree. The basicideais to cut the



branches(i.e., subtrees)in ReducedM onotonicTree(f)
which aresmallin the coveredarea.

Definition 5.1 Enclosing Line, Covered Region, Covered
Area

For anyimagerepresentedbyfunctionf, andanybranc
(i.e., subtee) B of ReducedM onotonicTree(f), let 90X
be the enclosingline of B’s root. We definethe enclosing
line of B to be 89X, the coveredregion of B to be X, and
thecoveredareaof B to betheareaof X.

Definition 5.2 Maximal Branch
For anyimage representedby function f, andsomescale
thresholdT’, a branch B of the reducedmonotonictreeis
calleda maximalbranch underT if
(1) its coveredarea< T'; and
(2) there is no otherbrandh C' sudthat B € C and
C’scoveredarea< T'.

Definition 5.3 CuttingValue

For any image representedby function f, and any
branch B of ReducedMonotonicTree(f), let F =
Extension(f) anddX betheenclosingline of B. If X
is outwar falling, we definethe cuttingvalueof B to be:

uttingVa, ue( 7f) zeouthdglgﬁelSetej(X) (JU):
else wedefine:
CuttingValue(B; f) = F).

min
z€QutBorder PizelSets.1 (X)

It's easyto seethatif B # ReducedM onotonicTree(f),
thenCuttingV alue(B; f) is alwaysfinite.

Lemma5.1 For anyimage representedy function f, and
somescalethresholdT, let { B;}?_, bethe setof the max-
imal branchesin Reduced M onotonicTree(f) underT.
For each B;, let X; beits coveredregion. Thenwehave:

Vi#j,Xi()X; = 0.
Basedonthelemmaabove, we candefine:

Definition 5.4 Smoothing by Cutting Branches

Let T' be somescalethreshold. For any image repre-
sentedby function f, let Q beits domainand {B;}-, be
the setof the maximalbranchesunderT'. For each B;, let
X; beits coveredregion. We definethe approximationof f
by cutting { B; }}; to beafunctiong : Q@ — R sud that:

(z) = CuttingValue(B;; f) if x € X; for somei;
IEI= f2) otherwise

Denoteg as SmoothingCB(f;T).

The aim of smoothingis to remove small-scaledetails
andgetthelarge-scaldeatures.On the otherhand,texture
retrieval is a procesgo retrieve andanalyzethe featuresof
regularsmall-scaledetails.

Definition 5.5 For any image representecby function f,
andanyscalethresholdT’, the setof maximalbranchesun-
derT is denotedas M azimal BranchSet(f;T). A maxi-
mal branchis called positive if its enclosindine is outward
falling; it's called negative if its enclosingline is outwaid
climbing

If the elementsin MazimalBranchSet(f;T) are
regular in their shapeand permutation, each of them
is a texton. Under the reduced monotonic tree, the
small-scaledetails are formally representedby the set
Mazimal BranchSet(f;T), which provides a basefor
other techniquessuch as point patternrecognition,shape
analysisandstatistics.

6 Experiments

In this section, we include four tests on smoothing by
cutting maximal branches. Maximal branchesare mainly
shawvn in black-whiteway: positive maximalbranchesre
shawvn in white color (gray level 255); negative onesare
shawvn in black color (gray level 0); andthe backgrounds
shawvn in gray color (gray level 127). Due to the limited
spacepnly for testtwo, we shonv the maximalbranchesn
gray colors. For theseexamples,the scalethresholdsare
selectedmanually so that noise and texture are displayed
clearlyatthesescales.

Testoneis shovn in Figure7. This testis a representa-
tive of ourtestson smoothingwhich shawv thatour smooth-
ing schemas successfuin noisereductionwhile maintain-
ing edgeretention.

Figure7: Testone: (a) originalimage ; with size150 x
160, (b) smoothedmageSmoothingC B(11;50).

Testtwo is shavnin Figure8. In thistest,thestarsin the
nationalflag form very regular texture. Eachstarappears



in a positive maximalbranch. Moreover, the characteristic
features(such as eyes, nose,mouth) in the faceare also

retrieved as maximal brancheswhich meansthe reduced
monotonictreecanbe usedfor objectrecognitiontoo.

@) () T © )

Figure 8: Test two: (&) original image I, with
size 148 x 204, (b)  SmoothingC B(I>;80),
(c)M azimal BranchSet(I2;80) in black-white, and

(d) Mazimal BranchSet(I>; 80) in graycolors.

In testthree(Figure9), two factscomplicatetexture re-
trieval: (1) the imageis noisy; and (2) the texture of the
orangeitself hascomplicatedstructures.We take a multi-
scaleapproacHor this example.We smooththeimagestep
by stepwith scales10, 50 and 300. We can seethat the
maximal branchedeing cut in the first step(Figure 9(b))
mainly correspondo noise. The maximalbrancheseing
cutin the second(Figure 9(c)(e))andlast (Figure 9(d)(f))
stepscorrespondo texturestructurestdifferentscales For
this example,the concentricfeatureof the texture is better
capturedby themaximalbranchest scale50.

In the last test (Figures10 through12), we againtake
multiscaleapproachlin this example differentkindsof tex-
turescoexist: stairnay, trees,andwater The differenceof
thesetexturesis clearly displayedin the maximalbranches
beingretrievedat the secondstep(Figure12).

Of course, in these examples, the scale thresholds
are chosenmanually and the structuresin the maximal
branchesare viewed and judgedby humanbeings. How-
ever, fromtheseexamplesve canseethatif we combineour
schemawith othertechniquesuchaspoint patternrecogni-
tion, shapeanalysisandstatisticswe will soonrealizeour
dreamof automaticallyremaoving noiseand detectingtex-
turein images.In addition,the reducedmonotonictreeis a
representationf structuresat all scalesn animage. Thus
it canalsobe usedto retrieve andanalyzestructuresatlarge
scaleswhichwill helpobjectdetectionandrecognition.

7 Conclusion

In this paperweintroduceda modeltermedmonotonidree,
which hasadwantagesover the contourtreesin imagepro-
cessing. The reducedmonotonictree canbe usedasa hi-
erarchicaepresentationf imagestructures.n particulay

Tl RN
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Figure 9: Test three: (a) original image I3 with
size 330 x 236, (b)MazimalBranchSet(Is;10),
(€)M azimal BranchSet(13°%; 50), where
o = SmoothingC B(I3;10), (d)
Magzimal BranchSet(I3°;300), where I3° =
SmoothingCB(I3%;50), (e) positve branches in
Mazimal BranchSet(I3%; 50), and (f) positve branches
in Mazimal BranchSet(15%; 300).

we demonstratethe applicationof the reducednonotonic
treeonimagesmoothingandtextureretrieval. Thereduced
monotonictree can also be usedto retrieve and analyze
structuresat large scaleswhich will help objectdetection
andrecognition.
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