INFORMATION PATTERN AWARE
DESIGN STRATEGIES FOR
NANOMETER-SCALE ADDRESS BUSES

JIANGJIANG LIU
August 9, 2004

A dissertation submitted to the
Faculty of the Graduate School of
University at Buffalo, The State University of New York
in partial fulfilment of the requirements for the
degree of

Doctor of Philosophy

Department of Computer Science & Engineering

Copyright by
Jiangjiang Liu

2004

ACKNOWLEDGEMENTS

| express my heartfelt gratitude to my advisor Dr. Nihar Mahapatra for his invaluable
advice and support throughout this research. His graduate course on computer architecture
piqued my interest in the area. His thoughtful criticism and inspiring guidance not only
helped shape this work, it also benefited me immensely in terms of both intellectual and
personal growth during my doctoral studies.

Many thanks go to my other thesis committee members, Dr. Chunming Qiao and Dr.
Shambhu Upadhyaya, for their valuable time, helpful advice, and feedback on my research
work, and encouragement on numerous occasions. My thanks also go to Dr. Hongjiang Song
for serving as the outside reader and for his invaluable comments on my thesis. | also thank
Dr. Xin He for his help and support during my graduate studies.

| express my appreciation to t@omputer Science and Engineeridgpartment staff,
especially, Jodi Reiner, Joann Glinski, Matthew Stock, William Wallace, Margaret Evans,
and Lynne Terrana for being always there to patiently help me over the years.

Acknowledgement is due to: théational Science Foundatipavhich partly funded this
research; th€enter for Computational Researel theUniversity at Buffalofor access to
their high-performance computers on which many of the simulations for this research were
performed;Sun Microsystems, Incand SimpleScalar LLJor providing free use of their
ShadeandSimpleScalasimulators, respectively; Sergey Lyubskiy for helping me with the
use ofShade and Niki Thornock ofBrigham Young Universitior helping me with the use

of theBYU traces

| sincerely acknowledge help, both big and small, received from my research group mate
and good friend, Krishnan Sundaresan. Research is more fun with his help and support.
The innumerable discussions we had were greatly stimulating and enabled deeper and faster
progress. Also, | thank him for proof reading a good portion of my dissertation.

| thank all former and current members of the Computer Architecture Lab for helping me
over the past five years. Special thanks go to Shanker Nagesh and Srinivas Dangeti. | also
thank all my friends who made my stay at Buffalo pleasant and memorable. Most of all, |
wish to thank my best friend Jian Chen for always being there.

Lastly and most importantly, | thank my parents and my brother for their love and constant
support in my educational endeavors, and, in the most special manner, my husband for his

unwavering support and understanding which made my efforts easier.

To Daoying

ABSTRACT

The growing disparity in processor and memory performance has forced designers to al-
locate an increasing fraction of die areacmmmunicatior(l/O buffers, pads, pins, on- and
off-chip buses) andtorage(registers, caches, main memoggmponent®f the memory
system to enable low-latency and high-bandwidth access to large amountsraiation
(addresses, instructions, and data). Consequently, the memory system has become critical to
system performance, power consumption, and cost.

In this dissertation, we consider three types of redundancies related to information com-
municated and stored in the memory system, with the main focus being on information com-
municated on nanometer-scale address buses. Thagraporal redundangyinformation
redundancyandenergy redundancyTo take advantage of these redundancies, we analyze
and desigrinformation pattern awarestrategies to exploit various patterns in information
communicated and stored in a multi-level memory hierarchy to derive gains in performance,
energy efficiency, and cost. Our main contributions are as follows. (1) A comprehensive
limit study on the benefits of address, instruction, and data compression at all levels of the
memory system considering a wide variety of factors. (2) A technique dadletivare-only
compression (HOQC)n which narrow bus widths are used for underutilized buses to reduce
cost, novel encoding schemes are employed to reduce power consumption, and concatena-
tion and other methods are applied to mitigate performance penalty. (3) A detailed analy-
sis of the performance, energy, and cost trade-offs possible with two cache-based dynamic

address compression schemes. (4) A highly energy- and performance-efficient dynamic ad-

Vi

dress compression methodology for nanometer-scale address buses. Many of the principles
underlying this methodology are also applicable to instruction and data bus compression.

All our analysis and design has been performed in the context of real-world benchmark
suites such as SPEC CPU2000 and using execution-driven simulators like Shade and Sim-
pleScalar. Our analysis shows that ample opportunities exist for applying compression
throughout the memory system. Further, we show that our address compression methods
can simultaneously provide significant improvements in energy efficiency, cost, and latency

compared to an uncompressed bus.

Vii

Contents

Abstract Vi
List of Figures Xili
List of Tables XXIi
1 Introduction 1
1.1 Motivation 1
1.2 Our Overall Approach and Contributions 2
1.3 DissertationQutline 4
2 A Limit Study on the Benefits of Memory System Compression
2.1 The Case for Compressed Memory System
Architectures 8
2.1.1 Opportunities forcompression 8
2.1.2 Benefitsof compression 11
2.1.3 Feasibilityandchallenges 13

viii

2.2

2.3

2.4

2.5

2.6

2.7

2.8

29

2.1.4 CMS architectures and degree of specialization 14

Related Work 16
2.2.1 Previousanalysis 16
2.2.2 Address, instruction, and data compression 17
2.2.3 Code memory COmpression.« v .. 18
2.2.4 Cache and main memory compression 19
225 Busencoding 19
Relationship of Our Work to Previous Research 20
Analysis Methodology 21
2.4.1 Compression ratios from entropy calculations 21
2.4.2 Compression ratios from practical schemes 23
243 Transitionratio 24
Simulation Environment L 25
Trace Collection. 29
Overall Memory System Analysis 31
Register Compression Analysis, 33
Cache Compression Analysis Across DifferentLevels 37
2.9.1 Instruction and data cache compression 37
2.9.2 Compression ratio and cache parameters. 40

2.9.3 Cache compression and cache access time, energy consumption, and

2.10 Compression and Transition Ratio Across Individual Buses 43
2.11 Compression Ratioand BitFields 45
2.12 Compression Ratio and Bit-Field Groupings a7
2.13 Compression Ratio and Power Savings for Different Workloads 51
2.14 Compression Ratio and Degree of Specialization 57
2.15 Power Savings Due to Compression, Encoding, and Both Combined . .59.
2.16 Power Savings and Bus Multiplexing 62
2.17 Compression Ratio and AnalysisTool 65
2.18 Compression Ratio and Multithreaded Execution 65
2.19 Conclusions 66
Hardware-Only Compression of Underutilized Address Buses
3.1 Introduction 68
3.2 Hardware-Only Compression i 70
321 OVEIVIEW e 70
3.22 Benefits 71
323 Overheads11
3.2.4 Hardwaredesign 102
3.3 Wire Layout Optimizations 76
3.31 Wirespacing0 e 76
3.4 SimulationSetup 76
3.4.1 Simulation environmento 77

3.4.3 Performance penalty andwiredelay 78
3.44 Busenergymodel19
3.5 Bus Utilization and Selectionof BusWidth 80
3.6 PerformanceOverheads 82
3.6.1 Extra cycle penalty for same degree of HOC across all buses . . 82.
3.6.2 Extra cycle penalty for HOC in individual buses 84
3.6.3 Extra cycle penalty for different relative degree of HOC 87
3.7 Energy-Efficient Transmission Formats 87
3.7.1 Technique O (TO): HOC baselineformat 88
3.7.2 Technique 1 (T1): HOC bus arrangement 88
3.7.3 Technique 2 (T2): HOC Idle-bitinsertion 89
3.7.4 Technique 3 (T3): HOC addressencoding 90
3.7.5 Technique 4 (T4): HOC transmission encoding a1
3.7.6 Techniques 5 (T5) and 6 (T6): Using idle bits as active shields . 91
3.8 Address Compressionand Bus Encoding 92
3.9 Performance and Energy Optimization
with Wire Spacing 98
3.10 Conclusions 102
Analysis of Dynamic Address Compression Schemes
4.1 Introduction 103

3.4.2 Busoutilization 77

Xi

4.1.1 Related work and our contributions 104

4.2 Dynamic Address Compression 106
4.2.1 Dynamic baseregistercaching 106
422 Busexpander e e 107
4.2.3 Overheads of address compression 108
4.2.4 Optimalindexsizes. 110
4.2.5 Compressed address transmissionformat 111

4.3 Simulation Methodology 114
4.4 SimulationsandResults. L oo 115
4.4.1 Performance, energy, and costtradeoffs 115
4.4.2 System performance and bus energy for fixed hardware costs . 118.
4.4.3 Influence of technology parameters on energy efficiency124
4.4.4 Influence of extra compression/decompression latency 127
4.4.5 Influence of virtuakphysical address translation 128
4.4.6 Influence of compression cache set associativity and replacement
policy 132

4.4.7 InfluenceofLlcachesize 135
4.4.8 Address compression across memory systemlevels 138.

45 Conclusions 141

5 Energy-Efficient Compressed Address Transmission and Partial-Match Address

Compression 149

Xii

5.1 Introduction 149

5.1.1 Scope and contributions of thiswork 151

5.2 Technique 1: Busarrangement 152
5.3 Technique 2: Idle-bit insertion for coupling energy reduction 154
5.4 Results for Address Arrangement and Idle-bit Insertion 155
5.5 Technique 3: LRU-encoded way-bits 156
5.6 Technique 4: Encoding higher order part of the address 159
5.7 Technique 5: XOR encoding for the compressed address 163.
5.8 Partial-Match CompressionCache 164
5.8.1 Partial-match encoding and transmissionformat. 167

5.8.2 Average miss penalty and average bitpenalty 172

5.8.3 Performance and energy optimized designs 177

59 Conclusions 186
6 Conclusions 188
6.1 KeyResults 189
6.2 Future Work 192
Bibliography 193

Xiii

List of Figures

2.1

2.2

2.3

2.4

2.5

Overall Memory System Analysis: Compression ratio variation across memory
system components. Communication components are in general more compressible
than storage components when first order entropies are considered.. 32
Compression Potential of Storage Components — Register Compression
Analysis: Average register compression analysis for 32 integer registers. 34
Compression Potential of Storage Components — Register Compression
Analysis: Average register compression analysis for 32 single-precision floating-
pointregisters. e 35
Compression Potential of Storage Components — Cache Compression
Analysis: Average instruction and data cache compression analysis for L1
andL2caches. 38
Cache Compression and Cache Sizé&Vith increasing cache size, compres-

sion ratio deteriorates somewhat. 39

Xiv

2.6 Cache Compression and Block SizeWith increasing block size, compres-
sion ratio improves. Cache associativity has negligible impact on compres-
sionratio. e e 40

2.7 Compression Potential of Communication Components:Compression
ratios for zeroth and first order behavior of various buses at different lev-
els of the memory system hierarchy. 44

2.8 Original, XOR, and Offset Address Trace Compression: Compression
ratios for original, XOR, and offset address traces for various address busks.

2.9 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation
of compression ratio across instruction address bit-fields — Higher order bit
fields show best compression. 48

2.10 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation
of compression ratio across data address bit-fields — Higher order bit fields
show bestcompression. o 49

2.11 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of
compression ratio across instruction bit-fields. 50

2.12 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of
compression ratio across data bit-fields. 51

2.13 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of

compression ratio across tag bit-fields.o 52

XV

2.14 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation
of compression ratio across different instruction and data address bit-field
OroUPINGgS. &« v o o e e e e e e e e e 53
2.15 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of
compression ratio across different instruction, data, and tag bit-field grouphi4gs.
2.16 Application Class Analysis: Desktop/workstation class workloads (SPEC
CPU2000 INT and FP programs). o v v v v v v v o 55
2.17 Application Class Analysis: Embedded workloads (MediaBench program$)6
2.18 Degree of Specialization AnalysisCompression ratio variation with degree
of specialization. 58
2.19 Communication Component Analysis Considering Bus Encoding and
Compression: The extent of power saving due to encoding, compression,
and compression and encoding combined. Compression followed by encod-
ing shows bestresults. 60
2.20 Communication Component Analysis Considering Bus Encoding and
Compression: The effect of information content of a trace on its power
CONSUMPLION. e e 61
2.21 Compression and Transition Ratio Variation with Multiplexed Traffic. . 62
2.22 Compression Ratio Variation Across Different Compression Measures
andTools. 63

2.23 Compression Ratio Variation with the Degree of Multithreading. 64

XVi

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Hardware for HOC: Compression hardware at sendingend. 74
Hardware for HOC: Decompression hardware at receivingend. 75
Average Bus Utilization and Percentage Standard Deviations) Across
Different Buses. e 81
Extra Cycles for HOC: Performance penalty (with and without concatena-
tion) when same degree of compression is applied to all three busédsl P
LDA, L1—L2 IDA, and L2—M IDA bus. BW represents bus width (in
bits), R represents percentage amount of bus compredsioepresents the
expected bus utilizatiot), the actual utilization from simulations, aklic

the actual utilization with concatenation. Concatenation is not possible in
L1—L2 and L2—M buses for f=0.5 and hence the value is not reported. .83
Extra Cycles for HOC: Extra cycle penalties for different degrees of HOC
for P—L1 load address, L.+L2, and L2~Mbuses. 85

Extra Cycles for HOC: Extra cycle penalties for different relative degrees

Proposed Bus Arrangement TechniquesThe figure on the left shows the
new basic transmission format that we propose for HOC. The figure on the

right further reduces energy by rearranging some bits to reduce unwanted

couplingtransitions. 90
On-Chip Energy Reduction Using All the Proposed Techniques.. . . . 93
Off-Chip Energy Reduction Using All the Proposed Techniques.. . . . 94

XVii

3.10 Off-Chip Energy Variation Across Transmission and Encoding Schemes. 95
3.11 On-Chip Energy Variation Across Transmission and Encoding Schemes. 97
3.12 Wire Delay Reduction Using HOC with Wire Spacing.. 99
3.13 Performance Improvement Across Different Compressed Bus Widths
With Wire Spacing. 100
3.14 On-Chip Energy Reduction Across Different Compressed Bus Widths

With Wire Spacing. 101

4.1 Dynamic Address Compression SchemesGeneral schematic of a dy-
namic address compressionscheme. 109

4.2 Dynamic Address Compression Scheme§chematic depicting how DBRC
and BE form a compressed address word differently before sending it on the
compressedbus. 110

4.3 Dynamic Address Compression Scheme®ur default transmission format
forDBRCandBE. 111

4.4 Extra Cycle Penalty for DBRC and BE for Different Compression Cache

4.5 Miss Rate for DBRC and BE for Different Compression Cache Sizes.. 122
4.6 Influence of Compression Cache Size on Off-Chip Bus Energy Dissipa-
tion: Off-chip bus energy dissipation ratio for DBRC and BE for different

compressed buswidths. L oL 123

XViii

4.7 Influence of Compression Cache Size on On-Chip Bus Energy Dissipa-
tion: On-chip bus energy consumption ratio for DBRC and BE for different
compression cache sizes. (NarrowBus) 125

4.8 Influence of Compression Cache Size on On-Chip Bus Energy Dissipa-
tion: On-chip bus energy dissipation ratio for DBRC and BE for different
compression cache sizes. (WideBus) 126

4.9 Energy Reduction in Compressed Address Buses for Different Technolo-
gies. This plot shows the effect of technology on compressed address buses
ofvariouswidths. 127

4.10 Influence of Compression/Decompression Latency on Performance with
and without Address Bus Pipelining.. 129

4.11 Influence of Different Virtual —Physical Address Mapping Schemes on
Performance.. 130

4.12 Influence of Different Virtual —Physical Address Mapping Schemes on
On-ChipEnergy. 132

4.13 Influence of Different Virtual —Physical Address Mapping Schemes on
Off-Chip Energy. e 133

4.14 Influence of Varying Compression Cache Set Associativity on Perfor-
mance and Energy:Extra cycle penalties are the least for fully-associative

caches. 134

XiX

4.15 Influence of Varying Compression Cache Set Associativity on Perfor-
mance and Energy:For most bus widths fully-associative caches also result
compressed addresses that dissipate least energy during transmission. 135. .

4.16 Influence of Varying Compression Cache Set Associativity on Perfor-
mance and Energy:Off-chip bus energies also reduce when the associativ-
Ity INCreases. e e e e e 136

4.17 Influence of Varying Compression Cache Replacement Policy on Perfor-

4.19 Influence of Varying Compression Cache Replacement Policy on On-
ChipEnergy. e 139

4.20 Influence of Varying Compression Cache Replacement Policy on Off-

ChipEnergy. e 140
4.21 Influence of Varying L1 Cache Sizes on Performance.. 141
4.22 Influence of Varying L1 Cache Sizes on On-Chip Energy.. 142
4.23 Influence of Varying L1 Cache Sizes on Off-Chip Energy.. 143
4.24 Influence of Varying L1 Cache and Buffer Sizes on Performance. . . . 144

4.25 Influence of Varying L1 Cache and Buffer Sizes on On-Chip Energy. . 145
4.26 Influence of Varying L1 Cache and Buffer Sizes on Off-Chip Energy. . 146

4.27 Address Compression Across Different Memory System Levels.. . . . 147

XX

4.28 Address Compression Across Different Memory System Levels.. . . . 148

5.1 Proposed Bus Arrangement TechniquesThe figure on the left shows the
new basic transmission format that we propose for the BE address compres-
sion scheme. The figure on the right further reduces energy by rearranging
some bits to reduce unwanted coupling transitions. 154

5.2 Energy Reduction Using the Proposed Address-arrangement Techniquel57

5.3 Frequency of Values Taken by LRU-encoded Way Bits.. 158

5.4 Energy Reduction Using the LRU-encoded Way-bit TechniqueOn-chip
bus energy dissipation ratio for different compression cache set associath@tes.

5.5 Energy Reduction Using the LRU-encoded Way-bit TechniqueOff-chip

bus energy dissipation ratio for different compression cache set associatiéfies.

5.6 Structure for Encoding the Higher Order Part of the Address. 162
5.7 On-Chip Energy Reduction Using All the Proposed Techniques.. . . . 165
5.8 Off-Chip Energy Reduction Using All the Proposed Techniques.. . . . 166
5.9 Partial-Match Logic. e 167

5.10 Partial-Match Compression Cache: Hardware organization for proposed

partial-match address compression scheme. 168
5.11 On-Chip Energy Ratio for PM for Different Encoding Schemes. 170
5.12 Off-Chip Energy Ratio for PM for Different Encoding Schemes. 171
5.13 Control Number FormatforPM. 172
5.14 Transmission formatforPM. 173

XXi

5.15 Individual Frequency and Total Frequency. 174

5.16 Individual Frequency of Different Partition Points for Different Com-

pressed Buses.. 175
5.17 Procedure TotalFrequency i 176
5.18 Algorithm MABP e 178
5.19 Procedure Concatenate. 179

5.20 Extra Cycle Penalty Variation Across Different Compression Schemes. 180
5.21 On-Chip Energy Variation Across Different Compression Schemes.. . 181
5.22 Off-Chip Energy Variation Across Different Compression Schemes.. . 182
5.23 Performance Improvement Across Different Compressed Bus Widths
With Wire Spacing. e 184
5.24 On-Chip Energy Reduction Across Different Compressed Bus Widths

With Wire Spacing. e 185

XXii

List of Tables

2.1

2.2

3.1

Summary of Benchmark Set and Input Files Used for Our Simulations. SPEC
CPU2000 (INT and FP) benchmarks were used in all experiments. MediaBench
programs were used in an experiment studying the effect of different workloads
on compression. All input files for SPEC CPU2000 programs are available with
the benchmark suite. Input files for MediaBench programs are available from the
MediaBenchwebsite. 27
Access Time, Power Consumption, and Area of Cache€ache parameters ob-
tained using the CACTI 3.0 model. Entries marked with ase a direct-mapped

organization for the compressedcache.. 41

Target System and Benchmarks:Default configurations for our target system,
benchmarks, and sample sizes used in our simulations. LSQ= load/store queue,
MAF= miss address file. This target system is broadly based on the Alpha 21264

PIrOCESSOL. . . v v v e e e i e e e e e e e e e e e e e 77

XXiii

4.1 Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios,
Miss Rates, and Compression Ratios for Address Compression Using DBRC
Scheme.For a given bus width (column) and metric (rows), [Al, A2] means that
Al is the index width (minimum or optimal) and A2 is the value for the metric
for that index width. For column corresponding to bus width=8, 10, and 36, the
minimum and optimal values are the same. Hence only one is reported.. . . 116

4.2 Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ra-
tios, Miss Rates, and Compression Ratios for Address Compression Using BE
Schemek-or a given bus width (column) and metric (rows), [Al, A2] means that Al
is the index width (minimum or optimal) and A2 is the value for the metric for that
index width. For column corresponding to bus width=36, the minimum and optimal

values are the same. Hence only oneisreported.. 117

5.1 Partition for PM Performance and Energy Optimization. 183

XXIV

Chapter 1

Introduction

1.1 Motivation

Performance, power consumption, and cost are arguably the three most important pa-
rameters that drive computer system design today, although their relative importance varies
across systems. Thus, while performance is most important in high-end multiprocessors
and servers, performance/cost drives the desktop market, and cost and power play a more
significant role in embedded and wireless systems.

All computer systems have three main subsystems:ctimeputation systeror the pro-
cessor core, thenemory systepand thel/O system The memory system has two main
types of componentstorage componen{gcluding registers, one or more levels of caches,
main memory) for storing information (primarily instructions and data) @@munication
componentgcomprising 1/0O buffers, I/O pads, and pins on the processor and memory chips,

and on- and off-chip control, address, instruction, and data buses) for communicating in-

1

formation (primarily addresses, instructions, and data) between the computation system and
storage components and between the storage components themselves.

A combination of dramatic technological and architectural advancements has resulted in
an exponential trend for computation system performance enhancement. This, coupled with
slower speed improvements of on- and off-chip interconnect, caches, and DRAM, has con-
tributed to a growing computation-memory system performance gap [26]. To address this
problem, the fraction of the processor chip devoted to storage (registers, caches) and com-
munication components (I/O buffers and pads, on-chip buses) has increased and so also has
the number and size of off-chip storage (off-chip caches, main memory) and communication
(pins, off-chip buses) components [26]. Moreover, in nanometer regime (drawn feature sizes
< 100 nm), interconnect size scales relatively poorly compared to logic size, and not only
do individual wire capacitances contribute to power consumption, but more so do interwire
capacitances between adjacent on-chip bus lines due to tighter spacing between lines [58].
Consequently, increasingly more fraction of the system power consumption and cost is due
to the memory system compared to the computation system [69]. Thus, the memory sys-
tem is becoming an increasing bottleneck as designers strive towards higher performance,

cost-effective, and power-efficient system designs.

1.2 Our Overall Approach and Contributions
In this dissertation, we consider the following three types of redundancies related to in-

formation communicated and stored in the memory system, with the main focus being on

information communicated on nanometer-scale address blisegoral redundanckefers
to the fact that there are time periods when memory system components carry no or non-
performance-critical information (e.g., idle buses and invalid, stale, or “dead” blocks in
caches)Information redundancyneans redundancy in the number of bits used to represent
information, which causes more resources (e.g., bus lines or memory cells) to be engaged
than necessary—information compression techniques address this. Femalfgy redun-
dancyimplies expending more than the required energy to communicate or store informa-
tion; encoding schemes attempt to minimize this redundancy via energy-efficient information
representations.

To take advantage of these redundancies, we analyze and de&gmation pattern
aware strategies to exploit various patterns in information communicated and stored in a
multi-level memory hierarchy to derive gains in performance, energy efficiency, and cost.
Our general approach consists of two phases. First, we analyze trace information off-line
to determine information patterns and instances prevalent in different parts of the memory
system. In light of this discovery, we next design hardware that, during run-time, statically
exploits these frequent information instances and/or dynamically exploits information in-
stances in accordance with predetermined frequent patterns. In our analysis, we consider ad-
dress, instruction, and data information, all types of communication (on- and off-chip buses
and associated circuitry) and storage (registers, caches, main memory, TLB, and page ta-
ble) components at different memory levels, and various target system (embedded, desktop,

server) and application (e.g., DSP, multimedia, integer-intensive, scientific) scenarios.

Our main contributions are as follows. (1) A comprehensive limit study on the benefits of
address, instruction, and data compression at all levels of the memory system considering a
wide variety of factors. (2) A technique callbdrdware-only compression (HOGh which
narrow bus widths are used for underutilized buses to reduce cost, novel encoding schemes
are employed to reduce power consumption, and concatenation and other methods are ap-
plied to mitigate performance penalty. (3) A detailed analysis of the performance, energy,
and cost trade-offs possible with two cache-based dynamic address compression schemes.
(4) A highly energy- and performance-efficient dynamic address compression methodology
for nanometer-scale address buses. Many of the principles underlying this methodology are
also applicable to instruction and data bus compression.

All our analysis and design has been performed in the context of real-world benchmark
suites such as SPEC CPU2000 and using execution-driven simulators like Shade and Sim-
pleScalar. Our analysis shows that ample opportunities exist for applying compression
throughout the memory system. Further, we show that our address compression methods
can simultaneously provide significant improvements in energy efficiency, cost, and latency

compared to an uncompressed bus.

1.3 Dissertation Outline
The remainder of the dissertation is organized as follows. In the next chapter, we com-
prehensively analyze the redundancy in the information (addresses, instructions, and data)

stored and exchanged between the processor and the memory system and evaluate the poten-

tial of compression in improving performance, power consumption, and cost of the memory
system. We then present our work on nanometer-scale address bus compression to improve
cost, power consumption, and performance by exploiting temporal, information, and energy
redundancies in the information carried. In Chapter 3, we describe a technique for exploit-
ing temporal and energy redundancies in buses caiedware-only compression (HOC)

in which narrow bus widths are used for underutilized buses to reduce cost. To minimize the
power overhead of HOC, we propose various techniques to ensure energy-efficient transmis-
sion of uncompressed information on narrow buses. In addition, we apply different degrees
of wire spacing by taking advantage of the extra area available from HOC to reduce coupling
capacitance and thereby reduce wire delay and on-chip energy.

In the next two chapters, we describe how we exploit information and energy redundancies
of information transmitted on memory system buses for performance, power, and cost im-
provements. Dynamic address compression schemes that exploit address locality can help re-
duce both address bus energy and cost simultaneously with only a small performance penalty.
In Chapter 4, we investigate two such schemes and determine their optimal parameters that
result in the highest area/cost reductions and least performance penalty for various address
buses (both on- and off-chip) in current systems. We present results on how address com-
pression schemes perform when applied to on-chip or off-chip buses in modern superscalar
processors. In particular, we explore the performance, energy, and cost benefits of address
compression, the effect of techniques like bus pipelining, and the effect of technology scaling

on energy-efficiency of compressed address buses. Next, in Chapter 5, we present various

techniques that can be used with existing compression schemes for buses to ensure high
energy-efficiency for compressed information transmission and propose a highly energy-
and performance-efficient dynamic address compression methodology for nanometer-scale
address buses, partial-match compression. To improve the hit-rate and reduce miss penalty
of the compression cache used in the previous schemes, we pnoaisd-matchingof

the tag portion stored in the compression cache with the higher order portion of the address
and present performance and energy optimized designs. Finally, Chapter 6 concludes this

dissertation and also discusses future research.

Chapter 2

A Limit Study on the Benefits of Memory

System Compression

A compressed memory syst¢@MS) architecture is a computer system architecture that
employs compression in one or more parts of the memory system. In this chapter, we con-
sider the advantages of CMS architectures in terms of improvements that can be obtained
in performance (improvements in bandwidth and latency of communication components and
improvement in capacity of storage components), power consumption, and cost. We consider
all the three primary types of information, namely, addresses, instructions, and data, and all
important storage and communication components at all levels of the memory system hier-
archy, where such information is stored or communicated. For addresses, we consider the
tag fields of instruction and data caches and instruction and data address buses. For instruc-

tions, we consider the data fields of instruction caches, main memory executable code, and

instruction buses. For data, we consider integer and floating-point register files, data fields
of data caches, and data buses. For our study, we consider a memory hierarchy with split
instruction and data caches at the first level, a unified cache at the second level, and a main
memory. We consider both demultiplexed and multiplexed buses.

The chapter is organized as follows. Section 2.1 discusses the advantages of a CMS ar-
chitecture and its feasibility. Then we review related work in Section 2.2 and discuss the
relationship of our work to previous research in Section 2.3. Sections 2.4, 2.5, and 2.6 de-
scribe the analysis methods and simulation environment used in our study. Sections 2.7 -

2.18 present the results of our analysis. Finally, we conclude in Section 2.19.

2.1 The Case for Compressed Memory System

Architectures
Here we first briefly explain where opportunities for compression lie in the memory sys-
tem in Sec. 2.1.1. Then, in Sec. 2.1.2, we explain the benefits to be gained by applying
compression. Next, in Sec. 2.1.3, we discuss the feasibility of applying compression and
some challenges to be overcome. Finally, we briefly describe a useful way to classify com-

pressed memory system architectures.

2.1.1 Opportunities for compression
Compression of some source information consisting of a sequence of symbols is possible

when those symbols occur with non-uniform frequencies or likelihoods either in the source

as a whole or in any given portion thereof. This allows for the encoding of the more frequent
or likely symbols with shorter code words compared to the less frequent or likely symbols,
resulting in an overall compression of the source. The three primary types of information that
are stored and communicated by the storage and communication components of the mem-
ory system, respectively, are addresses, instructions, and data. All three of these inherently

possess significant amounts of redundancy as we explain next.

Address redundancy

Addresses are of two types: instruction addresses and data addresses. Both exhibit spa-
tial and temporal locality, meaning that the next instruction or data address to be issued
by the processor is not random, but likely spatially and/or temporally close to recently is-
sued addresses. Instruction addresses issued by the processor to the L1 cache are typically
sequential, except when branches or jumps occur, and even when this happens, the target
addresses are not typically very far away from the last address. That is the reason why many
instruction sets provide branch and jump instructions that specify the target address relative
to the previous address. The addresses issued by L1 cache to L2 cache correspond to misses
in the former and are more unpredictable compared to those issued by the processor to L1.
Similarly, addresses issued by higher levels (away from the processor) of the memory system
become increasingly unpredictable and hence more information rich. Still, these addresses
do exhibit temporal and spatial locality, although to lesser extents. Data addresses issued by
the processor are also known to exhibit temporal and spatial locality because of scanning of

data arrays in loops, although to a lesser extent than instruction addresses. Like instruction

addresses, redundancies are expected to decrease at higher levels of the memory hierarchy.
As far as storage components are concerned, address information is primarily stored in the
tag fields of caches, translation-lookaside buffer (TLB), and page tables (and some registers,
such as the program counter and the memory address register, but this is not much). Since
tag fields store a portion of the address (a portion of the instruction address in the case of
instruction caches and a portion of the data address in the case of data caches), they are
expected to exhibit redundancy as discussed above for addresses. Specifically, the tag fields
correspond to blocks that have been recently accessed and as such they should be temporally
and spatially close. Note that since the tag field is normally derived from the high order
portion of the address, it is expected to possess a higher amount of redundancy than whole
addresses, since the high order end of the address is where more redundancy lies due to
the spatial proximity of addresses issued. Similarly, the TLB and page tables which store

address information (virtual and physical page numbers) will have redundancies.

Instruction redundancy

Since instructions fetched correspond to instruction addresses issued by the processor, in-
structions exhibit the same temporal and spatial locality as instruction addresses. Further, not
all instructions, instruction sequences, opcodes, register operands, and immediate constants
are present equally frequently. Repetitions of instruction sequences, opcodes, registers, and
immediate constants, and correlation between opcodes and registers and between opcodes
and immediate constants can be exploited. The reasons for the presence of such redundan-

cies are that all programs have certain basic characteristics, e.g., they have procedures and

10

procedure calls, they have branches every few instructions (typically every six instructions),
they use loops and if-then-else clauses, etc. Moreover, compilers used to generate object
code do so based on a set of templates, which naturally leads to redundancies. As discussed
for addresses earlier, instruction traffic at higher levels of the memory hierarchy are likely

to exhibit less temporal and spatial locality. However, since at higher levels, the instruc-
tion traffic consists of larger blocks, more redundancy is present within blocks. Similarly,

in storage components, there is redundancy in the instructions stored in main memory and

instruction caches.

Data redundancy

Data fetched by the processor also exhibits temporal and spatial locality, although to a
lesser extent than instructions. However, there is extra redundancy present in the values of
data communicated by data buses and stored in registers, data caches, and main memory.
For any given type of data (character, integer, floating-point, etc.), not all values are equally
likely. For instance, many programs do not tend to use the entire range of integer values
possible, but rather the values used tend to be concentrated around certain values, especially,
zero. For such small magnitude two’s complement numbers, most high order bits of the data

word are likely to be either all zero (positive) or all one (negative) due to sign extension.

2.1.2 Benefits of compression
Depending upon the state of the technology at the time of implementation and application

requirements, it may not be possible to use compression to advantage in all areas of the

11

processor system, although substantial direct or indirect improvements can be expected in
most areas of the system. As an example, using compression in on-chip or off-chip buses
can have multiple ramifications. The effective bandwidth of the system will increase as more
number of bits can be transmitted using the same number of bus lines. If the emphasis is on
reducing power, it may be possible to reduce the number of bus lines while maintaining the
same effective bandwidth, and this would result in power savings because fewer bits need
to be transmitted and because significant amount of power is consumed in the metal lines
of the chip. Similarly, a decrease in the number of bus lines will reduce the die area and
hence cost could go down significantly because cost varies as the fourth or higher power of
die area. Application of compression in other areas like caches, registers, and main memory
have obvious benefits like increasing the effective storage capacity using the same number of
transistors or lowering power consumption and cost by using smaller number of transistors
that provide the same effective storage capacity.

Compression can also be used possibly to improve cache latency by, for example, storing
a portion of the information in cache in compressed form. Using the same number of transis-
tors, this modified cache will have more effective capacity and hence less effective miss rate
than a regular fully uncompressed cache. The latency of the uncompressed portion of this
modified cache will be comparable or better (due to its smaller size) relative to the regular
cache. Also, the miss rate of the former will be only slightly worse than the latter for larger
cache sizes. This is because, for larger caches, miss rate reduces very slowly as cache size

increases. The latency of the compressed portion of the cache will be more than the regular

12

cache, but it will be less than that of the next higher level of the memory hierarchy. As a
result, if there is a miss in the uncompressed portion of the cache, the compressed portion
can be checked and if the required information is present, a slower access to the next higher

level of the memory hierarchy can be avoided.

2.1.3 Feasibility and challenges

As a downside, any implementation of compression in the memory system will have over-
heads in extra logic, latency, and power consumption due to the compression/decompression
logic. However, since the size, speed, and power consumption of logic (which will be used to
do compression/decompression) scale better than those of interconnect (which will be used
to communicate the information), these overheads will continue to decrease over time. Also,
the (area, latency, or power) overheads that can be tolerated for compression/decompression
vary from one part of the memory system to another and from application to application.
For example, more compression/decompression latency overhead can be tolerated at higher
levels of cache and main memory than at lower levels. Similarly, less latency overhead can
be tolerated in higher performance systems than in non-performance-critical systems. De-
pending upon the state of the technology, the location in the memory system where compres-
sion is to be applied, and the application system requirements, the compression scheme can
be more aggressive (better compression, but more compression/decompression overheads)
or less aggressive (moderate compression, but less compression/decompression overheads),
i.e., the compression scheme, and hence its overheads, can be suitably regulated. Accurate

estimation of overheads of compression and decompression is possible only with respect to

13

a specific compression scheme and architecture, which is not the focus of this paper, but of
our future work. Therefore, we concentrate in this paper on the limits to which compression

can be potentially exploited.

2.1.4 CMS architectures and degree of specialization

In general, a compression scheme is designed to compress some new raw information
based upon symbol statistics or frequencies drawn from some known or typical data set.
Depending upon how specialized this data set is, five important classes of CMS architectures,
from the most specialized to the least specialized, can be identified as described below. Note
that in all cases, symbol statistics are drawn from the same type of information (address,

instruction, data) as the type of information being compressed.

e Block-specific architectureln this case, symbol statistics used to compress a block
of information (e.g., a block in any cache or main memory or a word on a bus) are
drawn from the same block. Such a compression scheme utilizes the most specialized

information for compression, but it is likely to have the most complexity.

¢ Memory-component-specific architectuhen in a CMS architecture symbol statis-
tics are drawn from the typical data set of a memory component and are used to com-
press each block of that component, it is referred to as memory-component-specific.
For example, symbol statistics may be drawn from all the instruction addresses typ-
ically transmitted over the L1-L2 instruction address bus and then used to compress

each instruction address transmitted over that bus.

14

e Application-program-specific architecturetn this case, symbol statistics used for
compression of information in a memory component are drawn from the typical data
sets found in a given application program in all memory components that store or

communicate information of the same type.

e Application-class-specific architecturdn contrast to the previous case, here sym-
bol statistics are drawn from application programs that belong to the same class (e.qg.,
integer-computation-intensive applications or floating-point-computation-intensive ap-

plications), rather than from one particular application program.

e General architectureln this case, symbol statistics used for compressing information
in a memory component are drawn from a broad range of applications meant to be
executed on a system and from all memory components that store and communicate
the same type of information. Here the compression scheme utilizes the most general
type of statistical information and is expected to provide some reasonable compression

across a range of applications.

Itis possible to use different degrees of specialized statistical information to perform com-
pression in different parts of the memory system. Also, the compression scheme can be static
or dynamic, i.e., the statistical information used for compression can be predetermined and
fixed or it may change dynamically. A compression scheme is effective only if it is adapted
to the characteristics of the source information it seeks to compress. That is why we have

chosen to study the effect of varying degrees of specialization on the effectiveness of a CMS

15

architecture.

2.2 Related Work

Previous work in memory system compression has been done both in analyzing com-
pressibility and in the development of specific compression schemes for the memory system.
These include schemes for address compression and extension of these schemes to instruc-
tion and data compression, program code compression and compressed instruction set design
for embedded systems, and main memory and cache compression. Related work in traffic
optimization for low power using bus encoding has also been reported. We briefly review

previous research in these areas next.

2.2.1 Previous analysis

In previous analytical research focusing on finding the potential for compression, separate
studies by Hammerstorm and Davidson [24] and Becker et al. [4] used entropy models to
evaluate the compressibility of addresses in microprocessors. Wang and Quong analyzed
the potential of instruction compression [66]. They evaluated the effect of instruction com-
pression on the average memory access time for various types of memory systems. Later,
compressibility of program code in different architectures on various operating systems was
investigated by Kozuch and Wolfe [38]. The potential of main memory compression was
studied by Kjelso et al. [37]. We presented a brief analytical study of compression focus-
ing on overall benefits for the memory system in [48] and a broader study in [50]. Apart

from analytical studies of compressibility of memory system components, specific compres-

16

sion schemes have also been proposed for various memory system components. We briefly

review them next.

2.2.2 Address, instruction, and data compression

Park and Farrens presentediynamic base register cachif@BRC) scheme for com-
pressing off-chip, processor-memory addresses in [52]. In this scheme, the original address
is split into a higher order and a lower order component and the former is stored in cache
of base registers and the index to the base-register cache is transmitted on the bus along
with the uncompressed lower order part of the original address. They found that by using
a 16-bit bus for a 32-bit microprocessor and the DBRC scheme resulted in only a miss rate
of 2% and most of the time memory addresses could be transmitted using a 16-bit bus thus
achieving almost a 50% reduction in the number of pins. Citron and Rudolph proposed a
similar scheme, called BUS-EXPANDER (BE), for address, instruction and data traffic and
bus compression [11]. They reported hit rates of up to 95% for their compression caches
[11]. Both these schemes focused on reducing costs and improving pin bandwidth for off-
chip accesses. Recently, the effectiveness of BE-like schemes to reduce the switching ac-
tivity (power consumption) in off-chip data buses has also been studied [3]. Also recently,
Kant and lyer have analyzed the benefits of using dynamic-cache based compressed address
and data transfer mechanisms for server interconnects by exploiting the spatial and temporal

locality of addresses and data [30].

17

2.2.3 Code memory compression

Code memory compression schemes involve compressing the text segment of an exe-
cutable program to reduce code size (decreases memory requirements) and thus save power
and cost (larger memories consume more power and cost). Code memory compression
schemes can be divided into three. The first category of schemes, catleccompaction
schemes use compiler optimizations during embedded code generation to minimize sizes of
parts of code (like procedures and subroutines) that are used frequently. These are purely
software techniques and require no hardware support during run-time. Various code com-
paction schemes have been reported in literature [22, 19, 35, 15, 17]. A second category
of schemes, calledode compressigrrefers to techniques that minimize code size of the
executable and require decompression to be done before the compressed code can be ex-
ecuted. Among popular code compression schemes are compressed code RISC processor
(CCRP) [70], call-dictionary compression [47], software-managed dictionary compression
[42], semi-adaptive Markov compression (SAMC) and semi-adaptive dictionary compres-
sion (SADC) [44, 43], and IBM’s CodePack for PowerPC cores [32, 23]. Code compression
has also been proposed for VLIW architectures [14, 71] and have been recently adopted in
commercial VLIW processors [27]. Simple instruction encoding schemes have also been
proposed for low-cost, low-energy embedded processors [74, 5, 29]. The third category of
code memory compression schemes @mpressed instruction setisat are supported in

popular RISC cores like ARM and MIPS [1, 36].

18

2.2.4 Cache and main memory compression

Memory is an important resource for both embedded and general purpose processors.
IBM’s Memory eXpansion Technology (MXT) [64] enables the microprocessor to inter-
face with compressed memory (C-RAM) [21] and provides fast hardware compression and
decompression to enable access to the memory without significant increase in latency. Selec-
tive cache compression techniques [41], frequent value data caches [72], and dynamic zero
compression in data caches [65] have also been proposed and evaluated for performance and

power improvements.

2.2.5 Bus encoding

Bus encoding is an area of research that has major implications in low power design of
microprocessor systems. Encoding, although closely related to compression, is directed at
minimizing unwanted signal transitions in the information stream to reduce bus switching
energies during transfer rather than compressing the information itself. Various bus encoding
schemes for off-chip address buses like Gray code [62], bus-invert code [60], asymptotic-
zero (TO) code [6], and working-zone code [51] have been proposed and some of them [39]
have been applied to data buses too. Most of these schemes involve the use of a redundant
line that indicates if the current value on the bus is an encoded value or not. Some modified
address bus encoding schemes that do not require any redundant lines have been suggested in
[2]. More recently, bus encoding schemes have been proposed for on-chip buses taking into
account the effect of inter-wire capacitances that are especially important in deep submicron

designs [58, 25]. Apart from energy reductions, encoding schemes that reduce bus delay and

19

inter-wire cross talk have also been proposed.

2.3 Relationship of Our Work to Previous Research

To our knowledge, our comprehensive analysis of the potential of compression when ap-
plied to all parts of the memory system in the context of real-world benchmark programs
and using extensive simulations is the first of its kind. The purpose of this chapter is not
to present specific compression schemes, but to estimate the extent of compression possible
in various memory system components. Towards this end, we employ existing compression
tools and analysis methods (such as SAMC, Gzip, Markov models) to estimate the extent of
compression possible and estimate the improvements in performance, power consumption,
and cost improvements that can be obtained. We present results for all parts of the memory
system using realistic timing, power, and area models (CACTI 3.0 [56] and SimplePower
[76]). We also present results related to: (1) the compressibility of original, XOR, and off-
set instruction and data address traces, (2) the effect of compression on cache access time,
power consumption, and area, (3) the relationship between compression ratio and bit fields
and bit-field groupings, (4) the effect of application class, degree of specialization, encod-
ing and multiplexing, analysis tool, static vs. adaptive compression, multithreading, and (5)
the relationship between information content, compression ratio, and power consumption,

among other things.

20

2.4 Analysis Methodology

We analyze the potential for compression of a particular trace by measuring two parame-
ters described below. Firstpmpression ratipR, for any compression scheme is defined as
the ratio of the size of compressed information to the size of the raw uncompressed informa-
tion. We use various entropy measures and some available compression schemes to estimate
the information content or compression ratio possible for our traces. Settansition ra-
tio, T, for the compressed information is defined as the ratio of the number of transitions that
occur when the compressed information is transmitted on the bus to the number of transitions

that occur when the original uncompressed information is transmitted on the same bus.

2.4.1 Compression ratios from entropy calculations

The entropy of a source denotes the average number of bits required to encode each sym-
bol present in the source. Thus, the lower the entropy value, the more compressible the
source. Entropy values can be computed for a source based upon various models (zero infor-
mation, zeroth order Markov, first order Markov, etc.). Compression ratios based on these
models provide a theoretical lower-bound for a particular trace. We describe these entropy
models and how we computed compression ratios from entropy values next.

Zero information entropy: Given a source with symbol set, s, ..., Sy, the compress-
ibility of a symbol in zero information entropy is determined by its presence or absence in
the trace, irrespective of the number of times the symbol occurs in the trace. Thus, if there
areM unique symbols that actually occur in a trace oulNdbtal unique symbols that could

occur, whereM < N, the zero information entropy for that trace is Jdg, i.e., every one of

21

theM symbols that actually occurs is represented by a uniqugMagjt pattern.

Zeroth order Markov entropy: Given that the source data has symbolses,, ..., Sy
and each symbda occurs with probabilityp(s), entropy for the symbol is-log, p(s). The
zeroth order Markov entropy of the source data is given by the following relatipn=
—2vi[p(s)-log(p(s))]. Whereas zero information entropy reflects only the occurrence/non-
occurrence of symbols, zeroth order Markov entropy reflects in addition the frequency of
occurrence of symbols.

First order Markov entropy: In first order Markov entropy, we consider the occurrence
of a symbols;, the probabilityp(s;) of that symbol’s occurrence, and the probabifil;|s)
that the symbol is preceded by another syn#polrhe first order Markov entropy of a source
is given by:H; = — i [p(s) - 2y [p(sj|s) - log(p(sj|s))]] - This means that in a sequence
of symbols if the current symbol & and the next symbol is, this next symbok can be
represented using log, p(sj|s) bits.

The symbols that we consider while measuring the entropy of any trace (address, instruc-
tion, data) correspond to aligned words in the trace, i.e., 32-bit words for addresses and
instructions and 64-bit words for data. In our compression analysis study, we use only the
low-order 32 bits of the actual 64-bit address in order to keep simulation times reasonable.
Doing so results in a pessimistic estimate of the actual address compression potential since
the high order address bits have large amounts of redundancy due to the spatial locality char-
acteristics of addresses. Using the entropy values measured, the corresponding compression

ratio can be computed by taking the ratio of entropy times the number of symbols (words)

22

to the number of symbols (words) times the size of a symbol (32 for addresses and instruc-
tions and 64 for data) in the original raw trace. Thus, for exampleavieeage zeroth order

Markov compression ratiovern benchmarks is:

Ry — S, Hoof trace
° " nx Original wordsize

Ry andRy, are defined similarly.

2.4.2 Compression ratios from practical schemes

Some specific schemes to compress address, instruction, and data have also been proposed
recently. We used some of these schemes to measure compression ratios to obtain an estimate
of efficiency obtainable with practical schemes.

Instruction and data block compression schemeSemi-adaptive Markov compression
(SAMC), a compression algorithm based on arithmetic coding combined with a precalcu-
lated Markov model was proposed by Lekatasas and Wolf for code compression [45]. We
used the SAMC executable obtained from the authors to compress instruction and data blocks
with the following parameters: block size equal to L1 or L2 cache block size depending on
the level where the algorithm is applied, Markov model of depth 32 and width 256, and bits-
per-probability of 4. Theaverage SAMC compression ratiwer n benchmark traces was
calculated as follows:

ST, Size of compressed instruction or data trace
Y, Size of original trace '

Rsamc=

A point to note is that the SAMC algorithm is a block-based compression algorithm and
hence average compression ratio for an individual block of that size is reported as the output.

23

Address compression scheméelfwo techniques (dynamic base register caching and bus-
expander) have been proposed to compress addresses that are transmitted on buses [52, 11].
Both schemes use a small fully associative cache at the sending end for compressing ad-
dresses and decompress them using registers at the receiving end. In our analysis, we use the
bus-expander scheme to compress address streamavé@tage address compression ratio
overn benchmark traces is defined as follows:

Ragdr = S, Size of compressed address trace
ddr= s, Size of original trace

Data compression schemeGzip is a widely used GNU utility for compression in UNIX
systems. It uses Lempel-Ziv (LZ77) dictionary compression algorithm which replaces strings
of characters with single codes. Gzip does not do any analysis of the information source. In-
stead, it just adds every new string of characters it sees to a table of strings. Compression
occurs when a single code is output instead of a string of characters. Since Gzip uses an
algorithm based on bytes, good compression ratio is achieved on text files. We used Gzip
on address, instruction, and data streams to provide an idea of compression achieved using a
widely used text compression utility. Tlaerage Gzip compression ratwern benchmark
traces is defined as follows:

>, Size of compressed tragce
S, Size of original trace

RGzip:

2.4.3 Transition ratio
For CMOS technology, power consumption on a bus line is directly related to the switch-
ing activity on it as bits are transmitted one after another over it. We use a methodology

24

similar to the one used in SimplePower [73] to calculate the switching activity of a given
bus when information is transmitted across it. They calculate the average probability of a
transition in each bit of the bus and find the total average probability across all bits, which
is a measure of the per-input switching activity of the bus in bits [76]. Thus, the ratio of
bus power consumption for two traces using the SimplePower model is equal to the ratio
of the number of transitions for those two traces. We dediverage transition ratimvern

benchmarks for compressed traces as follows:

S S, No. of transitions in compressed trace
- > ;1 No. of transitions in original trage

2.5 Simulation Environment

Our target system has a memory hierarchy consisting of 32 integer and 32 floating-point
registers, split instruction and data caches at the first level, a unified cache at the second level,
and a paged main memory. The first level caches are write-through, 16KB each, 4-way set
associative, and have a block size of 32 bytes. The second level cache is write-back, 256KB,
4-way set associative, and has a block size of 64 bytes. For this target memory system
configuration, we used a modified version of ttechesimScache analyzer in SHADES
[12] running on SPARC-V9 platform to collect the real-time traffic (addresses, instructions,
and data) for benchmark progran@achesimsimulates cache operation by using address
information and hence can be easily modified to collect address bus traces. But we also
needed to collect instruction and data block traces for our analysis. To facilitate this, we

augmentedachesimy creating an interface to map addresses to the appropriate location

25

in memory where the instruction and the data blocks are located. This way, we were able
to collect the actual address, instruction, and data traffic between processor, caches, and
memory for our analysis.

We used benchmarks from the SPEC CPU2000 suite [16]. To capture the characteristics
of both integer and floating-point programs, we chose eight integer and seven floating-point
benchmarks randomly out of 26 in the suite. For some experiments, especially when study-
ing the effect of workloads, we additionally used five benchmarks from the MediaBench
suite [40]. A summary of our complete benchmark set is shown in Table 2.1. We used
the -O2 optimization flag, which does basic local and global optimization to compile these
benchmarks. All executables were statically-linked, in which the procedures and libraries
are linked with the main program during compilation itself. We ran the benchmark programs
using reference input sets provided with the SPEC2000 suite and to limit the execution times
of our simulations we used a methodology similar to the one described by Skadron, et al.
[57]. Their research shows that accurate simulation results can be obtained by avoiding un-
representative behavior at the beginning of a benchmark programs’ execution and by using
a single, short simulation window of 50 million instructions. In our simulations, we simu-
late (but do not collect results for) instructions before the representative segment (warm up
window) and use a sampling window of 50 million instructions to collect our results. The
sizes of the warmup windows are also different for different SPEC programs [57]. These are
also summarized in Table 2.1. For MediaBench programs, we used input sets provided on

the MediaBench website and collected results for complete execution.

26

Benchmark Representative Application Warmup | Inputs
window

SPEC INT [16]

gcc GNU C/C++ compiler 221M 200.s

gzip Text/file compression utility 2576M | input.source

vortex Object-oriented database 2451M | bendianl.raw

parser Word processing 500M ref.in

crafty Chess game playing program 500M crafty.in

twolf VLSI place and route 500M ref

mcf Combinatorial optimization 500M inp.in

vpr FPGA circuit placement and routing 500M arch.in, net.in

SPEC FP [16]
applu

swim
wupwise
lucas
art

ammp
equake

Parabolic-elliptic partial differential 500M

equation solver

Shallow water modeling
Physics/quantum chromodynamics
Number theory/ primality testing
Image recognition with neural ne
work

Computational chemistry
Earthquake simulation

500M
500M
500M
-500M

500M
500M

applu.in

swim.in
wupwise.in
lucas2.in
c756hel.in,
al10.img, hc.img
ammp.in
equake.in

MediaBench [4Q
jpeg

adpcm

gsm

ghostscript

rasta

]

JPEG image compression and decg
pression

Family of speech compression a
decompression algorithms
European GSM 06.10 provision
standard for full-rate speech transca
ing

An interpreter for the postscript lar
guage and portable document form
(PDF) files

Program for bandpass filtering adc
tive noise and spectral distortion
speech recognition systems

d-

1-tiger.ps
nat

limapweights.dat

nestimg.jpg, testimg.ppm
ndlinton.pcm, clinton.adpcm

alclinton.pcm, clinton.pcm.gsmn

ncoefficient file for 8KHz 15

critical bands) and speech fi
in SPHERE format.

(mappin

S

e

Table 2.1: Summary of Benchmark Set and Input Files Used for Our Simulations. SPEC
CPU2000 (INT and FP) benchmarks were used in all experiments. MediaBench programs were used
in an experiment studying the effect of different workloads on compression. All input files for SPEC
CPU2000 programs are available with the benchmark suite. Input files for MediaBench programs are
available from the MediaBench website.

27

For communication components, we performed experiments on traces of address, instruc-
tion, and data traffic between the processor and memory for all three levels: processor-L1
cache, L1 cache-L2 cache and L2 cache-main memory for each benchmark and calculated
the zero information, zeroth, and first order Markov entropies, and SAMC compression ra-
tio in each case and, in some cases, we also calculated the Gzip compression ratio. We
investigated the compression potential of storage components other than registers by calcu-
lating zero information, zeroth order Markov, and first order Markov entropy values, and
Rsamc andRgzip. For main memory, we calculated these values for the text segment of the
statically-linked executable code. For registers, we performed only zeroth order Markov
analysis. The reason we did not do a first order Markov analysis for registers is because a
compression scheme that exploits first-order behavior will need to represent the current value
in a register in a manner that depends upon the previous value. Since a register has only one
word, storing the previous and current values, even in compressed form, is unlikely to yield
much compression. Moreover, if register compression is attempted, the compression scheme
needs to be simple enough not to affect access latency by more than a little.

To keep the number of simulations reasonable and at the same time be able to study a
number of parameter variations, we consider certain default settings as follows. We consider
the default architecture to be memory-component specific as described earlier in Sec. 2.1.4.
Also, in the default case, for our communication component analysis experiments, we con-
sider demultiplexed buses, in which case there are separate buses for instruction address,

data address, instruction, and data. In some cases, we consider a multiplexed bus, with one

28

‘address’ bus carrying both instruction and data addresses and one ‘data’ bus carrying both
instructions and data. Also, the default level for which we report most of our results is be-

tween L1 and L2 caches. The default word size considered as a symbol size in Markov
entropy calculations is 32 bits for address and instruction, 64 bits for data, and 20 bits for

tag field (See Sec. 2.4.1 for an explanation regarding why we use 32-bit instead of the actual
64-bit address). For entropy analysis, in most cases, first order Markov provides the best
results and the performance of zeroth order Markov is also better than zero information. We
present these two entropy results in most of our plots. In the experiments that we describe
next, we summarize results in plots by averaging over all 15 (8 INT and 7 FP) benchmarks

or by showing averages for INT, FP, and MediaBench programs separately for specific com-

ponents. We calculate the average compression ratios as mentioned earlier in Sec. 2.4.2.

2.6 Trace Collection

For communication components, traces were collected by writing each new value trans-
mitted on a bus (connected between two storage components or between the storage compo-
nent and the processor) and its corresponding timestamp into a file. Thus, we assume that
bus lines are held at previously transmitted values when the bus is idle.

For storage components, the following methodology was adopted to collect dynamic
traces and to ensure that the analysis done reflects average compressibility of the compo-
nent. In instruction caches, a block may be loaded into and be replaced from a cache multiple

times during the sampling window of the simulation. A load and the next replacement of a

29

block correspond to a time period during which it is resident in the cache known as its cache
residence time. Since the time instant of a load that occurs before the sampling window
and that of a replacement that occurs after the sampling window are not known, we ignore
these time periods to avoid errors and consider only load-replacements that occur during the
sampling window. In a data cache, a data block in cache during the sampling window can
take on one or more values because of writes to it. Therefore, for data caches, we consider
the all data block values (instead of data blocks) that are acquired and replaced during the
sampling window.

During the simulation, we keep a record of the block address and CRT of each block that is
loaded and replaced during the sampling window. After simulation, we list the blocks in non-
increasing order of CRTs and sum the CRTSs of all blocks to get the total CRT (TCRT). Then,
starting from the first block, we select blocks in the list in order until the total residency time
of selected blocks becomes equal to 80% TCRT. Then we write in random order the actual
contents of these selected blocks a number of times in proportion to each block’s CRT into a
file to obtain the trace for our experiment. We do the same for 90% TRCT. We use a random
order to write the blocks to avoid any optimistic first order compression ratios that may be
obtained if the blocks were written in order of their sorted residency times.

For 80% and 90% TCRT traces, we consider only blocks up to 80% or 90% TCRT and
scale down the number of occurrences of such blocks (and hence the number of times they
need to be written to the trace file) by that of the last block selected. This simplifies the cre-

ation of the trace file compared to a 100% TCRT trace because in the latter the total number

30

of times each of the blocks needs to be written into the trace will be extremely large for some
blocks. Compression analysis for a cache is then done by analyzing its corresponding trace
file. The above discussion applies to the data field of instruction and data caches. From the
addresses and CRTs of the blocks available for the instruction caches, we are able to create
similar trace files for analyzing tag field compression.

Adopting a similar methodology as above for register compression analysis, we consid-
ered the residency times of only those values that are loaded and replaced in a register during
the simulation window. Note that by considering the residency times of blocks as above,
both in the case of cache and register, the trace file we created reflects the average contents
of the cache/register. Hence the compression ratios obtained would be those expected from a
compression scheme that chooses encodings based on average symbol statistics, rather than
one where the choice changes dynamically as cache/register contents change. Therefore, the

compression ratios we report in our studies are, in this sense, not optimistic.

2.7 Overall Memory System Analysis

We investigated how compression ratio and power consumption vary across memory sys-
tem components, namely, registers, cache, main memory, address bus, instruction bus, data
bus. The compression ratio is indicative of the extent to which performance enhancement or
cost savings can be realized. Figure 2.1 presents an overview of our analysis. We observe
that communication components are in general more compressible than storage components

(consideringH; values which provide the best lower bound for entropy). Among storage

31

components, we observe that the ordering from the most to the least compressible is L1
I-cache data field, L1 I-cache tag field, main memory, and registers.

Compression and Transition Ratio Variation
Across Memory Components

8 Zero Info. Average Values Summary
B Zeroth Order Ru Ry, Ry Rawme Te
M First Order 0.286 0.216 0.055 0.520 0.797
k=) BSAMC -
) g . v
é 0.900 B Transition Ratio E § g
B <

8 Registers L1 I-Cache L1 I-Cache Main L1-L2 L1-L2 L1-L2
Data Field TagField Memory Address Bus Instruction Data Bus
Bus

Memory Component

Figure 2.1: Overall Memory System Analysis: Compression ratio variation across memory system
components. Communication components are in general more compressible than storage components
when first order entropies are considered.

This is to be expected since instructions that are stored in the data fields of I-cache and tag
field that corresponds to the high-order portion of the instruction address carry significantly
higher amounts of redundancy than main memory or registers. Among communication com-
ponents, the ordering, from the most to the least compressible (again consldevialges),
is instruction bus, data bus, and address bus. A possible explanation for the higher redun-

dancy in the data bus compared to address bus is that a lot of the data blocks transmitted may

32

contain small magnitude numbers that have lots of either O or 1 bits. Further, it is observed
that the volume of data read traffic (data blocks sent from L2 to L1) is far greater than the
write traffic (data blocks sent from L1 to L2), which means that the same blocks may appear
in the data bus traffic often without any changes, and this also increases the redundancy. This
also explains why data traffic shows the best compressibility in zero information and zeroth
order analysis. We also observe that the ordering of the communication components in terms
of power savings after compression (from most to least savings) is as follows: address bus,

data bus, and instruction bus.

2.8 Register Compression Analysis

For register compression, we performed zeroth order Markov analysis over all 32 inte-
ger registers and 32 single-precision floating-point registers in our target architecture. In
SPARC-V9, all integer registers are 64 bits each and the single-precision floating-point reg-
isters are 32 bits each [67]. The floating-point register file (FPRF) als&sing, i.e., some
register names overlap. For example, the 32 single-precision register set, the lower half of
the 32 double-precision register set, and the lower half of the 16 quad-precision register set
overlay each other. Considering the total number of registers in our analysis and keeping
track of all values stored in them for large samples (50 million instructions) would have been
computationally intractable. Hence, we study only instructions that manipulate registers in
the single-precision FPRF.

Fig. 2.2 and Fig. 2.3 show the zero-information and zeroth-order compression ratio for

33

‘s191s1631

labajul gg 10j sisAjeur uoissaldwod Ja1sibal abelany:SISAjeuy uoissaidwo)d
Ja1sibay — suauodwo) abelols Jo [enualod uoissaldwo) :z'z ainbi4

JIISISAY JI3U[
14 0c ST
=]
SR E <IEIEEIS S
N < NS 3| - %
o = o lll= =l S
o SN IEIbs 3
3 ol [b
S 3 e
U 4 X2 e 1 =
U o m S e o N
S W oB o S L o U o
4=*2 3 &3 gl]
R = =) ° = = 4d o m
= ® & oS §
N S N A 5
L N W 2
< o
=
>
=
6910 CIe0 =LNI
‘my "y

ATewiung SAN[EA 95BIdAY

01

S9T°0

4 11}

ILY'O L
06t°0C

(0 191S1391 1939)ul SUIPN[OXH 4

2070
870

SLT0
98T°0 ¢

LEV'O

601°0

0

I9PIQ Yo7 |
‘oJuy 0197 [

==

SJII)SISIY J1939)U] SSOIIY UONBLIB A O1jey uolssdxduio))

000°0

- 001°0

- 00T°0

- 00€°0

- 00¥°0

oney uoissaardwo))

- 005°0

- 009°0

34

'sJa)1s16al juiod-buneo|) uoisioalid
-9|bulIs gg 10J sIsAjeue uoissaldwod 1a1sibal abelany:sisAfeuy uoissaidwo)
1218160y — sjuauodwo) abeio1S Jo |enualod uoissaidwo) gz ainbi4

s191s13a1 Jurod 3uneory
pasnun SuIpnjoxy

JJ)SIZAY JuI0J Suneoyq

1€ 514 (114 ST S 0
,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, [T Q@@.@
e L] - 0S0°0
8% 35 N
=2 - 0ST°0 S
o R e o =]
3 & == Hil|- 000 =
S = & Se||- 0ST0 @,
= 9.0 L=z m . m
SR 5% = - 00£0 wﬂ
- S A S oosco B
& % =
2 - 000 ©
- m - 0SY°0
1910 9020 sdd 2 - 005°0
OHy Hyy JIPIO YIOIZ H
ATewiung SN[A 93BIAY *oJuy 0J97 [

SJI9)SISIY JUI0J SUNBO[] SSOIDY UONBLIBA onjey uoissdadwo))

35

each register in the integer and floating-point register file. Considering average values, we
find that floating-point registers are more compressible than integer registers. The following

observations can be made from the plots.

e Integer register compressiorthe average zeroth-order integer register compression
ratio across all 32 registers, excluding register r0, is 0.169. We observe that integer
registers rl1-r7, rl4, rl15, r30, and r31 show potential for more compression than the
rest. This can be attributed to the register windowing employed in the SPARC register
architecture: r1-r7 correspond to the most often used ‘global’ set of registers which,
due to their more frequent usage show higher compression potential. Also, registers
r14,r15, r30, and r31 have dedicated use as stack, frame, temporary, and return-address
register respectively and may hence be used more frequently than others. But, one
may argue that many integer registers can potentially contain pointer V4B2bit
addresses of other locations where data is actually stored) that can take large values and
hence may be poorly compressible. But, there is indeed a lot of redundancy present
in pointers because they point to roughly a similar region in memory (since they are
dynamically allocated). Hence many of their high-order bits will be the same and

hence redundant.

¢ Floating point register compressiorThe average zeroth order floating-point register
compression ratio we observe for the 32 single-precision registers in SPARC-V9 is

0.161 (excluding registers f16-f29 that were all unused). Note that, as opposed to inte-

LPointers in SPARC-V9 are 32 bits. A simple C program using the sizeof(void *) functions will reveal this.

36

ger registers, a symbol size of 32 bits was used here to calculate entropy because only
single-precision operands were considered. The substantial underutilization of the reg-
ister set—13 out of 32 were not used by the benchmarks at all—can be explained by

the fact that these may have been used as double or quad-precision registers.

In summary, our results show that although there is good amount of variation in com-
pression ratio across registers, no register (INT or FP) has an audgagsmpression ratio
exceeding about 0.35, which implies registers can, on average, be compressed to about one-

third of their original size using a very good zeroth-order compression scheme.

2.9 Cache Compression Analysis Across Different Levels

In this section, we analyze the compressibility of L1 and L2 caches. First, we explore the
potential for instruction cache and data cache compression in separate experiments. Then,
we investigate the effect of change in cache parameters (cache size, block size, and associa-
tivity) on compression. Finally, we estimates the benefits of cache compression in terms of

improvement in cache access times, reduction in consumption, and reduction in area.

2.9.1 Instruction and data cache compression

Fig. 2.4 shows results for compression ratios calculated using zero information, zeroth
order, and first order Markov entropies for instruction and data caches. To limit the running
times and memory required for this analysis, we limited the sample size used for cache trace

collection to 20M instructions and 100% TCRT cache traces are collected for this study.

37

Compression Ratio Variation Across Different Cache Levels

O Zero Info. Average Values Summary
B Zeroth Order Ry Ry, Ry,
0.300 | m First Order 0266 I-Cache 0.261 0232 0.039
0.255 _ D-Cache 0.086 0.043 0.005

0.250 -

0.097

0.076

Compression Ratio
s e @
et o [\
S 94 =
(= < <
| | |

0.059

0-050 1 0-028

0010 0.0004

0.000
Level 1 Level 2 Level 1 Level 2

I-Cache D-Cache
Cache lL.evel

Figure 2.4:Compression Potential of Storage Components — Cache Compression Anal-
ysis: Average instruction and data cache compression analysis for L1 and L2 caches.
Comparing instruction and data caches, we observe that data caches are more compress-
ible. One reason for this could be the presence of data blocks with uninitialized values
(mostly zeros) that add to redundancy. Comparing between L1 and L2 caches, it would be
expected that L1 cache will be more compressible, if both L1 and L2 blocks are dynami-
cally compressed with the same scheme, due to the following reason. L1 cache contains a
more frequent symbol set (of instructions or data) and the L2 cache, in addition to storing
the contents of L1, also contains additional symbols (instructions or data) that are relatively
infrequent. This is observed to hold in the case of instruction cache, but for data caches we

observe that L2 is more compressible than L1, albeit slightly (by about 3% or less). One

38

Compression Ratio Variation with Cache Size

—— Zero Info Percentage Change Summary
—#-Zeroth Order Ry Ry, Ry,
0.3 - | =+ First Order 5.443% 3.222% 11.818%
\ o a
0.25 - - ;

-— .

0.2 1

Compresgion Ratio
—
wn
|

0.1
0.05 - A— — & & —a
0
8 KB 16 KB 32 KB 64 KB 128 KB

1.1 I-Cache Size

Figure 2.5:Cache Compression and Cache Siz&Vith increasing cache size, compression
ratio deteriorates somewhat.

possible explanation is that, since data is more dynamic in nature compared to instructions,
blocks in L1 cache tend to be replaced more frequently. This tendency may have been aggra-
vated by a small L1 data cache size (16KB). Both these factors result in a more dynamic mix
of data in the L1 cache trace making it less compressible. As we will see later in Sec. 2.9.2,
increasing cache size from 16KB to 32KB could have resulted in better compression for L1
D-cache. In contrast, due to the larger size of the L2 cache (256KB), data blocks tend to stay
longer and thus the L2 data cache trace is more compressible. On average for instruction
caches, we observed a zeroth order Markov compression ratio of about 0.23 and a first order

Markov compression ratio of about 0.04. This means that, theoretically, we could reduce

39

Compression Ratio Variation with Block Size

—— Zero Info. Percentage Change Summary
- Zeroth Order Ry Ry, Ry,

11.467% 7.008% 38.107%

0.3 o | —* First Order

Compression Ratio
=]

S <
)]
|

0.1
0.05 - — —
0
8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

L1 I-Cache Block Size
Figure 2.6:Cache Compression and Block SizeWith increasing block size, compression

ratio improves. Cache associativity has negligible impact on compression ratio.
instruction cache sizes by about 4 to 25 times by applying cache compression methods or

store that much more information in the same area.

2.9.2 Compression ratio and cache parameters

We also investigated the sensitivity of cache compressibility to cache parameters, namely,
cache size, block size, and degree of associativity and its relationship to access time, power
consumption, and area. All experiments in this set were done on L1 instruction cache resi-
dent blocks. From Fig. 2.5, we find that the compression potential of cache first increases and
then decreases with increasing cache size. For the range that we studied, cache compression

potential is maximum for a 32KB cache. A larger cache has more relatively infrequently

40

occurring blocks than a smaller one, and that explains its lower compressibility. However,
even for large caches, the compression ratio is very good.

In general, compression ratio improves when we increase block size as shown in Fig. 2.6.
This is because a larger block has more spatially close instructions than a smaller one, and
so, for the same cache size, increasing block size increases the number of instructions that
are related to each other, and a smaller block size leads to more block boundaries where
interruptions in related instructions occur. We also performed experiments to test the impact
of varying cache set associativity on compression and we found that it has negligible impact

on compression ratio.

Cache | Comp. Access Time Total Power Area
Type
Method | (ns) (% (nJ) (% Tag Tag (% | Data | Data
redn.) redn.) | (cn?) | redn.) | (cm?) | (%
redn.)
L1 Uncomp| 1.2790| — 1.6889| — 0.00112 - 0.01163 -
L2 Uncomp} 1.7363| — 3.0679| — 0.00514 — 0.12910 —

L1 |- | Zeroth- | 1.2357| 03.385 | 1.5845| 06.185 | 0.00063 43.75 | 0.00633 45.57
cache | order
L1 D- | Zeroth- | 0.7550| 40.969 | 0.5767| 68.854 | 0.00023 79.46 | 0.00179 84.61
caché | order
L1 |- | First- 0.7550| 40.969 | 0.5767| 68.854 | 0.00023 79.46 | 0.00179 84.61
caché | order
L1 D- | First- 0.7398| 42.158 | 0.5724| 66.108 | 0.00020 82.14 | 0.00160 86.24
caché | order
L2 Zeroth- | 1.3011| 25.065 | 1.8850| 38.558 | 0.00117 77.24 | 0.02549 80.26
order
L2 First- 1.2398| 28.600 | 1.7281| 43.672 | 0.00023 95.53 | 0.00179 98.61
order

Table 2.2: Access Time, Power Consumption, and Area of Cache€ache parameters obtained
using the CACTI 3.0 model. Entries marked with ase a direct-mapped organization for the com-
pressed cache.

41

2.9.3 Cache compression and cache access time, energy consumption,

and area

To measure the effect of compression on other parameters like access time, power con-
sumption, and area of the tag and data arrays, we used the CACTI 3.0 model [56] for a 0.18
micron SRAM cache implementation. Table 2.2 gives values of these parameters for L1 and
L2 caches. Here, we compare a normal uncompressed cache with a smaller (by compression
ratio) compressed cache having the same effective storage capacity. Both cache have simi-
lar parameters, such as block size and set associativity, but the compressed cache has fewer
blocks (compression ratio times the number of blocks in the corresponding normal uncom-
pressed cache). In some cases, however, the size of the compressed cache was too small (due
to the compression ratio being very small) to use a set-associative mapping in CACTI 3.0.
In those cases, we used a direct-mapped cache implementation. We observe that with tag
and data field compression in the compressed cache, access times can be reduced by about
41%(29%) and power consumption by about 66%(44%) on the average for L1 (L2) levels

w.r.t. normal uncompressed caches with the same effective capacity.

42

2.10 Compression and Transition Ratio Across Individual

Buses

Zeroth order and first order redundancies in all buses

Figure 2.7 shows compression and transition ratio results for demultiplexed buses at all
three levels. We observe that tRg andRy, values are similar across all levels. Based on
Ry, values, instruction address is most compressible and data address least, except for L2-M,

where data is most compressible.

Original, XOR, and offset address trace compression

Since instruction and data addresses are known to exhibit spatial redundancy to different
degrees, it would be expected that the XOR of consecutive addresses will have a lot of zeros
(especially at the high order bit positions) and that the offset values for consecutive addresses
will have small magnitudes. Note that computing bitwise XOR of twit addresses re-
quires constant time and little hardware and offsets can be compu@{tbigN) time using
a carry lookahead tree adder. However, XOR traces have a power disadvantage. Every bit
transition in the original trace will cause two bit transitions in the XOR trace, except when
consecutive transitions occur in the original trace (not likely), in which case there will not
be any transition in the XOR trace. To study the compressibility of original, XOR, and off-
set address traces, we evaluated their zero information, zeroth order, and first order Markov
compression ratios, which are shown in Figure 2.8. Since instruction addresses occur at

some very frequent offsets (typically an instruction word), the zero information and zeroth

43

‘Ayorelaly waisAs Alowsw ayl JO S|aA3)|
JUBJIBYIP Te SasNnq SnNOoLeA JO loiAeyaq JapJo 1Sl pue Yylo4az 1o} sones uoissald
-Wwoo:siusuodwo)d uoneaunwwo) Jo [enualod uolissaldwod :/ g ainbi4

sng ©JBp puER SUONONIISUL 0] DINV'S
pue sassarppe Juissaxdwod 10J pasn 1opuedxg-sng .
N-T'1 Il I'l-d
p e))))
M > W M - - M > W M M > W M
- = 5 2 = 5 |2 & = =R s =
FPEY R 8¥;EFT§T E EEFEPTET B 58z %
i o a B o o B B L 9 B o o - - o o 9 e L
"2z 8 g7"g" 88 8 gT"sgFrEPE 8 &7 "8 -
| @ =)
=
= & - o
® - 8 5 s 003
3 3 m = 2 e mm o S MM) - 80 m
S = £ B s E L.
: - : TS
:) z
= ~ o 2 -
5 S
16’0 S8S°0 00 8E€CO +8C0 IN<TI oney uonIsuei] |
GC80 L8SO €500 90C0 TICO <TI<Td LSUWAYOS [BNOVY []
7680 LS990 SYO0 6£C0 6¥€0 <I'Td JIPIO ISI []
D «[ene 'n Us H
L b | A A b | IPIO Y)0.97 W
AIeWIING SON[E A 93CIAY ‘ojuf 0197 [

SIsSng [ENPIAIPU] SSOIIY UONBLIBA ONeY uonisuel], pue uoissdaduio)

44

order Markov compression ratios for instruction address offset traces is the best and even
the XOR trace has better compressibility than the original trace. However, when consider-
ing first-order Markov compression, the original trace provides the best compression and the
offset trace the worst. This is expected since, given an offset, the next offset value can vary
depending upon the instructions being executed at the time. However, given an instruction
address, the next instruction address can be easily predicted. In the case of data addresses,
XOR and offset traces do not necessarily give better compression ratios due to more variation

in data addresses issued.

2.11 Compression Ratio and Bit Fields

In this experiment, we consider eight consecutive bit fields (from high to low order: F7,
F6,..., F1, FO) corresponding to each nibble for instruction and data addresses. For 64-bit
data, we consider four consecutive bit fields (F3, F2, F1, and FO) corresponding to each
half-word (16 bits). For 20-bit I-cache tag, we consider four fields each a nibble wide. For
32-bit instructions, we consider six fields (F5, F4, F3, F2, F1, FO) of widths 2, 5, 6, 5, 9, and
5 bits respectively based on the field boundaries of the most common instruction format in
SPARC-V9 architectures (J-format). In the experiments under this section, the symbol size
for compression corresponds to the above-mentioned bit field sizes. We generated individual
bit-field traces for data addresses and instruction addresses at-the level, instructions
and data at the L.3:L2 level, and tag field of L1 I-cache and then analyzed each trace by do-

ing zeroth and first order Markov analysis. We also considered three different representations

45

Compression Ratio Variation Across Original, XOR, and

D
o

N Oy 0 O = —
T N O == O N
e AT cdcQ 080'Oi
Sl) S 3 * Ssal ele “«—
go S S So S S|wnm pPPY Bled N2
Hx 52225 8l
S|l 0 A —a oD %%%%E SSOIPPY Bied ¢ 11
mxooooooww _
B . o~ %%%%E sseIppy Eleq 11 d 3
El% o5 hoyA x> S
Sl N Y AA QS Qg B
PleE S S S o ISO'O.E SSOIpPY uoKONISU| N—g1 =
g)ﬂ o . 0S0°0
—~ N~ - .
Sl 2 2 S FF zss%)'(?q $S2IpPY UORONASU| g7 1]
@ I~ =7 o o o =7 v20°0
> -’ ~ - = o ~ ST0°
<4 4 € 4 < 42| ool sseippy uononnsul |7—d
i R e B e R B 100°0
. an ssaIppy eleq Nz
7)) LIV'0
z B ssoiopy 1o 11
s 9020
[=
[24)
i SSsal ele ©
Z i :
<P} 08I’ sseJppy uononisu| N<—z1 S
[TIT0 N
"5 €01
= SSaJppy uononisu| gl |1
< 15 74(]
~— Efg?@ SSaJppY UONONIISU| | T<d
(<P} S6T°0 '
)
Sy g
Gy Z%L? ssalppy eleq <21
o 9¢¥°0
28r0 sseIppy Bleq g1 1
910 c
S
820 sseppy Bleq L 1—d g
9¢5°0 S
— ££7°0, £
= son $S2IPPY UOLONISU| 2]
= ~— 670 g
oy
F_Pm % 8470 N
OO .
Ol 055_0,_5556_’; $S8IPPY UORONISU| | T—d
[I I I I I
c o o o o
S S S & S S
ST A -

Bus

Figure 2.8:0Original, XOR, and Offset Address Trace Compression:Com-

pression ratios for original, XOR, and offset address traces for various address

buses.

for each bit-field stream in addresses: original (raw), XOR-encoded, and offset-encoded. The
motivation for studying these address representations was described earlier in Sec. 2.10.
According to the results shown in Figs. 2.9- 2.13, we observe that compression ratio varies
across bit-fields and the variation differs for each type of traffic. In general, across all types
of information, we observe that compressibility improves from low order to high order bit
fields, except somewhat in the case of instruction bus traffic. Comparing data addresses
and instruction addresses (Figs. 2.9 and 2.10), we observe the following. First, instruction
addresses are more compressible than data addresses. Second, zeroth-order and first-order
compression of bit-fields yield more returns in instruction addresses than in data addresses.
Third, offsets and XORs of instruction addresses are more compressible with higher-order

compression schemes.

2.12 Compression Ratio and Bit-Field Groupings

We also investigated how compression ratio varies depending upon grouping of bits fields
for compression. We considered five bit-field groupings for addresses that are mentioned in
the top right corner of Fig. 2.14: Group-1 (G1) consists of 8 nibbles with each compressed
separately, Group-2 (G2) consists of a most significant byte followed by 6 nibbles, Group-3
(G3) comprises a most significant part of 12 bits followed by a byte and then two nibbles,
Group-4 (G4) consists of a most significant half-word, a byte, and then a nibble, and finally
Group-5 (G5) considers the whole word as a symbol. In a similar vein, the bit-field groupings

that we considered for instruction, data, and cache tag fields are shown in Fig. 2.15.

47

IBPIQ 15114

1PSPO | YOX

"uoIssaldwod 1saq Moys sp|al} g JapJo J1aybiH
— Sp|alj-1ig SSaJppe UoNINJISUl SSOJoR okl uoissaldwod Jo uonelrep :sbul
-dnoio pjai4-ug pue spjald 1g pue oney uoissaidwo) :6°Z ainbi4

SSAIPPVY uononysuy 1« d

IIPIQ YJOIZ

‘0JuJ 0197

mey | 1Psgo | J0X mey | 1PsPO | JOX mey

o.o.o
== = | R | T E
0S00 1S00 LZSO 1SHO
7600 9LI'0 SKSO MOX S = 5 =
6900 96£0 00S0 Mey c * g
" My My

ATewrung SIN[EA 93LIdAY

o4O T4 24O €AM vA0 SA0 94 W LAO

T T I
< a8 >
< <

oney uoissdaduwo))

\
=
<

\
x®
=

-7l

SPRLY 11 SSAIPPY UONINIISUT JUIIIJI(] SSOIOY UONBLIE A oney uoissdxduio))

48

"uolssaldwod 1Saq Moys spjalj 1iq Jap.io

1aybIH — sp|al-11q SSalppe elep Ssoloe onel uolssaldwod Jo uonele sbul
-dnoi9 piai4-lig pue spjai4 g pue onley uolssaidwoD:QT ¢ ainbi4

sSaIppVy ere(I'T— d

*0Ju] 0197,

1PSPO | MOX mey

JIPIQ ISI] JIPIQ YJoId7Z
PSPO | YOX | Mey | PSPO | YOX | Mmey
g B ¢ 9 é
LIF'0 00S0 96L°0 I9SHO -
STF0 ¥IS0 S6L0 dOX
11¥°0 +0S0 8SL'0 mey
'y my Hy
>.=wEE=m m@-.-——w > Qw&h®><

££8°0

=
=
N
=4 =
N Fa
E .
o = I P>
0
)
W)
= =
=2 £523 Sood
=== === ==

o400 T4 <O €4M
pAO SAO 94 LA

T T T T I
® ¢ T a9 2
< < = =
oney uoissdadwo))

T
-

[
N
—

SPRLY 11 SSAIPPYV BIB([JUIIJI(J SSOIIY UONBLIE A oney uoissaaduro))

49

Compression Ratio Variation Across Different Instruction Bit Fields

O F5 [2-bit] B F4 [5-bit] B F3 [6-bit] Average Values Summary
O F2 [5-bit] EF1 [9-bit] O FO0 [5-bit] Ry RHo RH1
0.905 0.653 0.518
1.200 - e -«
R w =)
A ©~ [7¢) (=)
o0 S22 = - R
o o) = 0 \&
= S N R = 1
& 0.800 = |5 = s g 2 s 2
g S = wn] S
1 w) [—]
§0.600 1 pt < 5 &
2 % 2 |
g 0.400 - = = %'i
8 =)
0.200 -
0.000 —
Ry Ry, Ry,
L1+L2 Instruction Bus

Figure 2.11:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across instruction bit-fields.

For addresses only, we considered original, XOR-encoded, and offset-encoded values for
compression separately. We observe the following from the results shown in Fig. 2.14 and
Fig. 2.15. In general, for any type of information the more the number of bits in the higher
order field, the better overall compression ratio we get. When we consider the whole word
as a symbol (G5 for addresses and G4 for others), the best compression ratio was obtained.
In the case of instruction addresses, we find that XOR-encoded and offset-encoded values,
in most cases, perform worse than original values for zero-info and first-order compression.
However, for zeroth-order compression, these perform substantially better than original val-

ues. This is because the same XOR or offset values repeat for different combinations of

50

Compression Ratio Variation Across Different Data Bit Fields

O F3 [16-bit] Average Values Summary
1.000 - B F2 [16-bit] Ry Ry, Ry,
0.900 0.898 0.888 OF1 [16-bit] 0.783 0368 0.196
M FO0 [16-bit]
0.800 -
2
= 0.700 -
f 0.600 -
S
2 0.500 - 0461 445
[<9]
2.0.400 -
g 0.300 -
8 . 0.232 0.224
0.200 - 0.16 .16
0.100 -
0.000
R H R HO RHI
L1<L2 Data Bus

Figure 2.12:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across data bit-fields.

original addresses, thus resulting in higher zeroth-order compression.

2.13 Compression Ratio and Power Savings for Different

Workloads

Results for experiments reported in previous sub-sections were averaged over all bench-
marks. In this experiment, we compare the compression potential and power savings due to
compression of different workloads: integer, floating-point, and embedded. The results of
this experiment are shown in Fig. 2.16 and Fig. 2.17 for SPEC CPU2000 and MediaBench

programs, respectively.

51

Compression Ratio Variation Across Different Tag Bit Fields

[F4 [4-bit] Average Values Summary
B F3 [4-bit] Ry RHo Ry,
0.800 | C1F2 [4-bit] 0341 0243 0.186
B F1 [4-bit]
B F0 [4-bit]

-]
=
=~
<

<
o
i
<

=
=
=
=)

Compression Ratio

= = e @

[} (7% = (V)] =)

=3 =3 (=3 =3 (=4

=} < =} =} <
L L L L L

0.100 -

0.000
Ry Ry, Ry,
L1 I-Cache Tag Field

Figure 2.13:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across tag bit-fields.

The following observations can be made for desktop/workstation class workloads repre-
sented by the SPEC CPU2000 benchmark programs. As seen earlier in Sec. 2.8, for this
type of workload, data in floating-point registers are more compressible than data in integer
registers. For program instructions (stored in I-cache data field and main memory and trans-
mitted on instruction bus) and addresses (in I-cache tag field and instruction address bus), we
observe that the information for the FP application class is more compressible than the INT
application class. We also see that the FP data sent over the data bus is more compressible
than the INT data sent over the same bus. This may be because the FP data blocks sent from

L2 to L1 (in the event of an L1 D-cache miss) may contain many unused FP words that are

52

‘'sbuidnoJb pjai-q

SSalppe elep pue uondNNSUl JUSJSLIP SS0Jor onel uoissaidwod Jo uoneuep

:sbuidnolo pjai4-lg pue sp|ai4 g pue oney uoissaldwod:yT g ainbi4

sng
mm@h@€< ﬁa&h— I T<d mw@h@@< :950:.59.: TT<d
Em fm Hy Em cmm Hy
52282
V— 1PSPO O YOX W [eUISLIQ | + chm.
- 006°0
6Z1°0 ¥L00 9Y0°0 | 661°0 SST'0 LEI'0 | 6IT0 8TTO0 TITO <€ HY9)
PET0 SYTO0 9TT0 | PLOCO SSTO0 OPT0 | T8T'0 TLI'0 €LT0 ¥ISION 270
9bT'0 0€T0 €HE0 | 19770 €6T°0 ¥HIV'0 | SLTO0 €0€0 SE€H'0 PIVISICI H%9)
0ST'0 LIESO O0SH'0 | SEP'0 $6€0 €hP'0 | 1650 0€S°0 LISO PIvIbIVIVIFIS :TD
S79°0 SS90 €190 | 099°0 TS9O TI90 |6ES0 0L9°0 6790 ¥IvIbIvIvIVIVIY 1D
PSPO YOX [BUISHQ [19SPO YOX [BUISHIQ (9SO YOX [euISlIQ
'HY Hy Hy
ATewiuIng SON[BA 95BIAY

oney uoissdadwo)) uo ssurdnois) pRII-3Y JUIIJJI JO 13

53

‘'sbuidnoub pjaly
-11g Be) pue ‘erep ‘UoNoONJISUI JUSIBYIP SSOJOR Ollel uoIssaldwod Jo uoneuen
:sbuidnois pjai4-1g pue spjai4 1g pue oney uoissaidwoD:GT g a4nbi4

juduoduwo)) AIOWIIA

PRI Sel, dyde)-I I'] sng eje(¢'I<1'1 sng uononajsuy ¢'1—11
Ty
- 000°0
- 0010 &
- 0020 3
S
- 00¥°0 %
- 0050 2,
- 009°0 m
- 00L°0 e
- 0080 .vluv
- 0060 =-
- 0001 ©
€500 ILI'0 6220 0T 9 € 0 O
0210 1ST0 780 bISI8 518k PLIST €0 W
010 S9T0 6650 bIbIbIS Z€les 61IET 79 O
9570 0LE0 LI90 bibIbIbIY OTI9TI9I9T SI6ISIOISIT 0 W
sng eje(sng uondnysuy
My ‘Hy Hy SeLoped 11 71 < I'l 71— 11
AICWWNG SIN[E A ISBIoAY

oney uorssdxdwro)) uo sgurdno.an) pRII-11g JUIIII(JO 13

54

"(sweiboid 44 pue NI 000Z2NdD O3dS) speo|
-YJom sse|o uoneisyiom/dopisaq SisAjeuy sse|D uonedl|ddy:9T z ainbi4
B)Ep pue SuondInIjsul 10y DIAVS
yuuodwio) ATOWRA pue sosssoappe Surssordurod 10§ pasn puedx-Sng,

sng K1owd A ppU Sel | PR veq
sng eje@ ¢T—1T | uoponnsuf -1 | SngSSIpPY ¢T—T1| U aYPED- I'T | dYaeD-T I'T | 19SSy
N N = N N N N
] o) @] ® e ® ®
82 :F i FEE 3 3 $on s
=fzifEise s f i = = 45
5 ag @ @ 5|5 @ e SR H°
-0
=)
= Sle .
EnSo =l 2=l €0
nc..FLFOO Do
8$vm/vmc o =N & .
S : i - V0
n NN - 9°0
ol B2 B 2
S Y oo
A - 80
3 & = /.Lmu@
= * 32 SSHS
I X3
S N -1
e 8ILO0 LSSO TVOO0 ¥LI'O €£C0O0 dA
= 6¢80 9090 €900 60C0 0OI€0 INI| tzr
S L | EM cmﬁ Hyy
JdIE INIO ATeurung SIN[eA 958IAY

sy rewyIudy J.4 pue LNI SS0VY
UoNBLIB A Onjey uonisuel], pue uoissdaduio)

oney uonisuel] /uorssdaduo))

55

‘(sweusboud
youagelpalN) Speopiom pappaqu3 :sisAjeuy sse|) uonedljddy:2 Tz ainbi4

I9PI0 ISIL] 0" uﬁ@ﬂcQEcU £ JOUIdTA] BJEp pUB SUONOINIJSUI I0J Pasn DHIAVS
oneY UOIJISUBLL, :*Y" L [1OPIO 0197 :* Q" Z o o cww m@mm@uw_-vm u:mmmw.ﬂniau .:%- pasn dpuedxy-sny .
TopURAXG-SNg | -ogur 0197 T 17s PPY | PPY | PP | PRY | PPU | PPU
ejeq | v)eq | Sel | vwleq | sel | eieQq
sng ejeq | sng ‘nsu] | sng “IpPPY | WA | dYIL)) | YOR)) | 3YIL)) | AYOR)) | dYIL)) | 3YPPR) | F =
© =
(4 nd ¥ | I 11 I 11 urejA | -ac1 | -d1r1 | 171 | ;171 | I 1T | (I TX w 5
]| 5| | N N
| | o Y SR TN G R TN G T N T N G N G N G BN G N G NI NI N
O SIS NSl St ittt
= 000°0
z I N Y E N z
D () . o D =) [D
S = S 2 S2Sg8ell S22 = S Q
* S % SN["S+8=23=2%| || zS=* - 0070 §
T = RN 3 e Sm oo = =
S8 ¥ TS = NE Bhos 2
0 4 8 v Z ° . W
* wo oL, o4 WS 2SI 00v0 2
NG & RE % Oy o8 <
= - = 38 ~ 3
in - S - 0090 =
k. ° B
£ n U =
x =< 2,
= 3 w - 0080 £
o =
4 n ¢e80 9650 900 LOTO 19C0 e
W I L *_Ezuwm ﬁmﬂm cmﬂm Hyy - 000°T mv
% ATeWIuINg SON[E A 93BIAY
- 00’1

SYIRWYOUIE YIUIRBIPIJA SSOIOY
UONBLIE A oney uonisued I, pue uoissdaduwo)

56

set to zero giving rise to redundancy of information. We also observe that for communica-
tion components, FP programs give better power savings than INT programs. For embedded
workloads, represented by MediaBench programs, compressibilities are somewhat worse

than both integer and floating-point programs.

2.14 Compression Ratio and Degree of Specialization

In this experiment, we investigate how varying degrees of specialization of the compres-
sion scheme affect compression ratio. We set up five different types of specialization as men-
tioned in Section 2.1.4. In thieenchmark-specifiarchitecture, the compression scheme is
specific to each benchmark, but same for all blocks and memory components. For this, sym-
bol statistics used for compression of any trace are determined by analyzing symbols from
all memory components. In thepplication-class-specificase, symbol statistics for various
components for a subset of benchmarks, the sample-benchmarks, for each application class
(INT or FP) are determined and then these statistics are used to compress components for
the remaining test-benchmarks in the same application class. To limit the simulation time
and memory required for this study, we limited the sample size used for trace collection to
10M instructions. Here, we show separate results for INT and FP.

We observe from results in Fig. 2.18 that with the degree of specialization decreasing, the
compression ratio deteriorates. But we observe that compressibility with a general compres-
sion architecture is slightly better than an application-class-specific architecture although the

former is less specialized than the latter. The general case that we considered here very sim-

57

‘uonezijeloads Jo aalbap yum
uoneleA onel uoissaldwodsisAfeuy uonezijeldads Jo aa1baq:gT 'z ainbi4

juuodwo)) AIOWIIA]

sng ereq 111 sng uonoNNsuy 7 1—1'1 sng SSIPPY TI—1'1
-1 Y- 2 wE
72! 72] 72] 2] 72} 172]
CREfterez PR et ses P ETE A B
2 e E8c R el s 8288 B a8 B 8BS
S FEF3355% 1 FEFIET 235% 3 FEEEEEE%
— ﬁ Q.oonﬂo. = m.» 0 e.oapmo. = M.ba qwanma. 000°
—~m
= S =
5 OJH_ =2 ol | o OIM = OIW - 00T°0
T e =% ol 2| S= =l| 3| 2= o o
RE po ©3 3| | S 5 ol = eI 0000
o s o et 2 - 00€°0 ,m
= N S &x - 00F°0 =
: © 3 T 2
Jo % - 0080 &,
—& - 0090 S
— . =
= - 00L°0 &
22 =" B - 0080 £
SW. S m o0 S o2 - 0060
] S RR &R - 000°T
3 S £% 23
8L0 LS80 LEOD 80°0 90°0 10°0 mem
€L’ SLO 91°0 LTO 170 L0°0 "HY
[eRuany ssep-qddy oneys Soad-[ddy Liownpy Yooig PPIO IS
AIeWUNG SoN|E A dSBIoAY JIPIO YJ0I7Z [0

uoIsSdIdwo)) uo uonezIernddg Jo S93139(] SUIAIe A JO 1

58

ilar to the application-specific-class and the only difference is that it draws statistics from all
application classes combined. Since the number of distinct application classes considered in
our analysis is only two (INT and FP classes—MediaBench programs can be considered to in
the INT class), the general case does not result in worse compression than the application-
specific class. For the first four cases, first order Markov performs better than zeroth order
Markov. But in the application-class-specific case, it is the opposite. This is because for sym-
bols that occur in both test benchmarks and sample benchmarks, symbols are compressed
according to statistics in sample benchmarks in zeroth order Markov, but if their preceding
symbols do not occur in sample benchmarks, the symbol is left uncompressed in first order

Markov and this results in worse compression for first order Markov.

2.15 Power Savings Due to Compression, Encoding, and

Both Combined

Some experiments above demonstrated that power saving can be achieved with compres-
sion alone. We wanted to investigate if bus encoding, compression, or both applied together
decrease power consumption further. We conducted experiments for the three cases and the
results are shown in Fig. 2.19 we found that by using compression and encoding together,
we could achieve the best power saving. In fact, on the average, compared to the reduction
in transitions due to encoding alone, compression reduces transitions further by about 9%
and compression followed by encoding reduces transitions by 17%. Thus, a scheme that

combines both compression and encoding, can provide excellent benefits in terms of energy

59

Effect of Encoding, Compression, and Compression-
Encoding on Transition Ratio

B Encoded Average Values Summary
Il Compressed Tk Tc Tce
O Compressed-Encoded 0.872 0.797 0.723
1.000 - 0.937 0.901
0.900 -
0.777 0.811
4 0.757
£ 0-800 0.703 0.709 0.758
E 0.700 -
= 0.600 -
.S 0.500 -
N
g 0.400 -
£ 0.300 -
& 0.200 -
0.100 -
0.000 - —
L1—L2 Address Bus L1+L2 Instruction Bus L1-L2 Data Bus
Bus

Figure 2.19: Communication Component Analysis Considering Bus Encoding and
Compression: The extent of power saving due to encoding, compression, and compression
and encoding combined. Compression followed by encoding shows best results.

efficiency.

The above result is reiterated in another experiment where we studied the effect of in-
formation content on the power consumption of a particular trace. To study how different
amounts of information content affect the power savings in a trace, we grouped all traces
that we used (address, instruction, and data traces) in different groups according to their first
order compression ratio (information content). For example, traces with compression ratios
in the range (0, 0.1] were put in one group, those in (0.1, 0.2] in another, and so on until
the last group with range (0.9, 1.0]. We used first order compression ratio since it has the

lowest value for all traces and hence it represents the lower bound for compression. After

60

Analysis of Information Content and Power
Consumption for Various Traces

p—
%)
|

—— Raw

-+ Encoded

—+ Compressed
—= Compressed—Encoded
— Linear (Encoded)

o
I

Compression/Transition Ratio
(=]
=
|

=

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
First Order Markov Compression Ratio

Figure 2.20: Communication Component Analysis Considering Bus Encoding and
Compression: The effect of information content of a trace on its power consumption.

grouping the traces, we calculated the average transition ratio for each group (total number
of transitions in all traces in a group divided by the number of traces in the group) for the
original, compressed, encoded, and compressed+encoded versions of the traces in the group.
We did this for all traces in all groups and normalized the number of transitions with respect

to the trace that had the maximum number of transitions. We plotted this normalized average
transitions against the mean compression ratio of a group and the result is shown in Fig. 2.20.
It shows that for a given trace, the number of transitions increase with information content,
although, for a given information content (compression ratio), the compressed+encoded and

compressed traces cause fewer transitions.

61

Effect of Bus Multiplexing on Transition Ratio

OSAMC Average Values Summary

Roame Te
Multiplexed: 0.590 0.843
1.000 - 0.943 Demultiplexed: 0.535 0.784

0.900 - 0.811

=
5 0.800 - 0.743 0.703 0.757

<
o 0.700 - 0.593

g 0.600 1 4m6 0.477
£ 0.500 - :

% 0.400 -
£ 0.300 -
= 0.200 -
0.100 -
0.000

B Transition Ratio

L1—L2 (m) Address| L1—L2 (m) Data L1—L2 Address L1-L2 Data

Multiplexed Demultiplexed
Bus Type

Figure 2.21:Compression and Transition Ratio Variation with Multiplexed Traffic.

2.16 Power Savings and Bus Multiplexing

The default bus in our experiments was the demultiplexed bus, and so we also wanted
to know how multiplexing affects power consumption. As mentioned earlier, a multiplexed
address bus means that both instruction and data addresses are carried on the same bus.
Similarly, a multiplexed data bus means that both instructions and data are carried on the
same bus. We compared multiplexed and demultiplexed address and data buses and obtained
results as shown in Fig. 2.21. While multiplexing an address bus slightly improves both
the address compression ratio and power savings, it degrades both in a data bus by a non-
negligible amount. This shows that there is sufficient redundancy in multiplexed address

streams whereas it is not true for combined data/instruction streams. For data/instruction

62

Compression Ratio Variation Across Different Tools

B Zero Ing)- Average Values Summary
B Zeroth Order
M First Order Ry R Ho R Hy Rsamc Rip
B SAMC 0.311 0.216 0.052 0.520 0.136
B Gzip
0.700 -
0.593
0.600 -
.2
= 0.500 -
g
.g 0.400 -
4
© 0.300
3
= 0.200 -
@)
0.100 -
0.000 -

L1—L2 Address Bus L1—L2 Instruction Bus L1—L2 Data Bus

Memory Component

Figure 2.22:Compression Ratio Variation Across Different Compression Measures and
Tools.

buses, the degree of specialization of the compression scheme on demultiplexed bus is higher
than multiplexed bus. On demultiplexed bus compression is specific to each trace itself
(instruction, data from L1 to L2, data from L2 to L1, etc.) but on the multiplexed bus, the
compression scheme is used for all content on the bus, consisting of instruction and data
traffic (both directions) on the bus. This also accounts for lesser compression and power
savings on the demultiplexed data/instruction bus. Thus, in spite of multiplexed traffic on

address buses, benefits can be obtained but the same is not true for data buses.

63

Compression and Transition Ratio Variation Across

Degree of Multithreading

(@\]

—

o= w = 1

g <= 3 =

ole~oc oo z

; :

=)

Q a

Iq ~

SA2=aaq 3

21177 l

.::v-“-*llT 3

<= == @

~ d@,d 2

<ﬂ< s

i Y e R o B g

2

2 o

(=]

i1

£~

&

2

2 o

£

=

) —

= P

S =
.-
O =

T S SSIT 2

= 8

O €8T’ s o

7 B : 27

5; €871 é:

B E €8T'T Eg

IST'T E

[T T T T I
N, A = n S
(g\] v =
onjey uonisuet | /uoissdadwo))

64

Bus

Figure 2.23: Compression Ratio Variation with the Degree of Multi-

threading.

2.17 Compression Ratio and Analysis Tool

SAMC, an arithmetic compression scheme, does not approach the entropy bound, but
provides a decent compression ratio of 0.48-0.59 as shown in Fig. 2.22. Among available
compression tools, SAMC performs much worse than the commonly used text compression
utility Gzip, that uses dictionary compression methods. It is also noticeable that there is a
wide gap (almost an order of magnitude) between the theoretically achievable compression
bound (zeroth and first order entropies) and that achieved by existing compression techniques

such as SAMC or Gzip.

2.18 Compression Ratio and Multithreaded Execution

To observe how multithreaded execution affects compression ratios of programs when a
shared (address, instruction, or data) bus is used for different threads, we sinkuledgd
multithreading by obtaining address, instruction, or data traces krbenchmarks and cre-
ating a single trace (address, instruction, or data) by ordering them according to the times-
tamps, i.e., one cumulative trace is created for each of address, instruction, and data. To
limit memory required for this analysis, we limited the sample size used for trace collec-
tion to 10M instructions. In the case of addresses, we analyze address offset traces because
they have more redundancy in general. For any memory system component, it is expected
that because of intermingling of traffic from different threads, more transitions will occur.
The results shown in Fig. 2.23 suggest that this is somewhat true, although, transitions often

do not increase by much when the degree of multithreading is increased from one to five.

65

Multithreading does not seem to have a perceptible impact on first order compression ratios.

2.19 Conclusions

In this chapter, we presented a comprehensive analysis of all three primary types of infor-
mation (addresses, instructions, and data) stored and transmitted by the storage and commu-
nication components, respectively, at various levels of the memory system hierarchy. The
analysis was done in terms of the compression ratio possible, which in turn reflects the
amount of performance and to some extent cost improvements attainable using compression.
Our analysis was done on SPEC CPU2000 integer and floating-point benchmarks. We have
shown that a substantial amount of information redundancy exists in every component of
the memory system, such as registers, tag and data fields of caches, main memory (storage
components) and also in address, instruction, and data buses (communication components).

Some important results from our analysis are mentioned below. We observed that infor-
mation stored in the memory system can be compressed to at least 39% of their original
size with ideal zero-information compression schemes and to about 31% with ideal zeroth-
order compression schemes. Information transmitted in the memory system through buses
was found to be more compressible on the average for similar schemes. We found that by
compressing tag and data fields, cache access times can be reduced by about 41%(29%)
and power consumption by about 66%(44%) on the average for L1 (L2) levels w.r.t. nor-
mal uncompressed caches with the same effective capacity. Also, both tag and data areas

of caches can be substantially reduced by compression. Other conclusions drawn from our

66

analysis are as follows: (1) Among storage components, L1 cache was slightly more com-
pressible compared to L2 cache and cache size and block size affected compression ratios,
(2) Among communication components, the level of the memory hierarchy where the com-
ponent is present, different bit fields, and bit-field groupings play a part in determining the
amount of compression that is possible, and (3) Compression ratio also depends on the de-
gree of specialization of the compression scheme. We also studied the compressibility of
original, XOR, and offset instruction and data address traces, the effect of application class,
encoding and multiplexing, analysis tool, static vs. adaptive/dynamic compression, multi-
threading, and the relationship between information content, compression ratio, and power
consumption.

Next, in Chapters 3-5, we present our work on nanometer-scale address bus compression
to improve cost, power consumption, and performance by exploiting temporal, spatial, and

energy redundancies.

67

Chapter 3

Hardware-Only Compression of

Underutilized Address Buses

3.1 Introduction

Higher instruction issue and clock rates and larger address spaces in modern processors
and systems-on-chip (SoCs) necessitate monemunication componentaddress, instruc-
tion, and data buses and associated hardware like I/O buffers, pads, and pins), which con-
tribute to increased area/cost and power consumption. On-chip buses scale relatively poorly
in size compared to logic and this results in more area, which causes more individual wire
capacitance and hence power consumption. Further, due to tighter spacing between higher
aspect-ratio wires of buses in nanometer regime, coupling capacitance effects become pro-

nounced, resulting in even more power consumption. Increasing the number of pins and

68

off-chip buses is difficult because it is limited by the surface area of the chip, whereas the
amount of logic circuitry grows as the volume of the die. Also, off-chip buses have orders of
magnitude more capacitance than on-chip circuit nodes and this exacerbates the power dis-
sipation problem. Therefore, it is important to minimize area/cost and power consumption
due to communication components.

This chapter focuses on the area/cost and power consumption of address buses. Previous
work in reducing cost relies on using narrow buses to transmit compressed addresses [20, 11].
Bus encoding schemes, on the other hand, strive to reduce power consumption by trans-
mitting encoded (uncompressed) addresses that cause fewer self-transitions [8] and fewer
coupling-transitions [77, 34]. For narrow buses, two particularly relevant encoding schemes
are the Pyramid code [9] for DRAM address buses and the BITS and ABITS codes [55].
We proposéhardware-only compressigitiOC) of underutilized address buses in which ad-
dress information is transmitted on a narrow bus over multiple cycles to reduce area/cost and
improve bus utilization, and possibly also lower power consumption. Due to its simplicity,
HOC is expected to have lower area and power consumption overheads at the and receiving
ends compared to address compression and encoding methods. We present hardware designs
and new encoding methods for HOC and analyze in detail its performance, power, and cost
implications through realistic execution-driven simulations.

The rest of the chapter is organized as follows. In Section 3.2, we describe in detail our
HOC strategy, including its benefits and feasibility, and hardware design. In the following

section, we discuss how area savings from HOC can be exploited via appropriate wire lay-

69

outs. In Section 3.4, we describe our simulation setup and metrics and in Sections 3.5 - 3.9
present various strategies for for improving energy efficiency of HOC and results from our

simulations. Finally, Section 3.10 concludes the chapter.

3.2 Hardware-Only Compression

In this section, we describe HOC in detail, including its benefits, overheads, hardware

design, and novel encoding schemes.

3.2.1 Overview

In hardware-only compression, so called because only the bus hardware, but not the infor-
mation transmitted on the bus, is compressed, a narrow bus is used to transmit information
over multiple cycles. HOC is applied to underutilized buses to save cost and improve bus
utilization and possibly lower power consumption. Buses at different levels of the memory
system are underutilized because of the following reasons. Memory referencing instruc-
tions (loads and stores) that cause data addresses to be issued from the processor constitute
only about 41% in RISC processors [26]. As a result, the utilization of processor-to-levell
(P—L1) data address (DA) buses can be expected to be low. Correspondingly, the utiliza-
tion of DA, instruction address (IA), data, and instruction buses to higher levels of cache
or DRAM can be expected to be lower since caches filter out most of the instruction or
data misses. A limited form of HOC to reduce the number of pins on DRAM is used by

multiplexing row and column addresses.

70

3.2.2 Benefits

Some of the benefits that can be obtained directly or indirectly by using HOC are as
follows. In the case of on-chip buses, HOC results in less area, and when applied to off-chip
buses, the number of I/O pads and pins reduces, all of which lead to lower die and packaging
costs. Due to the smaller area, capacitance and thus power consumption may reduce. Further,
by using area no more than a normal, uncompressed bus, a narrow bus can: (1) use greater
spacing between bus lines, which will reduce coupling capacitance and hence delay, power

consumption, and cross talk; and/or (2) use wider wires to reduce resistance and hence delay.

3.2.3 Overheads

Using hardware-only compression entails performance, area, and power consumption
overheads. Performance overheads can occur due to two reasons. First, since addresses
occur nonuniformly over time, buffering will be required at the sending end and even then
these buffers may fill up due to an address burst, necessitating pipeline stalls. Second, since
addresses arrive at the receiving end later, cache/memory access is delayed and this delayed
fetch may cause a dependent instruction to stall the pipeline. However, modern processors
using dynamic scheduling can minimize the occurrence of such stalls by executing instruc-
tions out of order. Performance overheads can be mitigated in three ways. First, more
buffering can be done at the sending end to avoid buffer-full related stalls. Second, addresses
can be transmitted in-bit groups from the high- to low-order end so that address tag and
index fields are received quickly to allow early hit detection in the cache/memory at the re-

ceiving end. Third, when bus width is a non-integral fraction of the address vadtress

71

concatenatiorcan be used, i.e., during the last cycle of transmission of an address, if there
are unused bus lines and if the next address is available, a part of this next address (start-
ing from the high-order end) can be transmitted. To indicate the presence or absence of a
concatenated address in this last cyclepacatenation bitan be used.

There will be area and power consumption overheads due to the additional logic required
to transmit and receive addresses in parts, for extra address buffers at the sending end, and for
supporting address concatenation if used. But these overheads will not be much compared
to the savings obtained by compressing long on-chip buses and off-chip buses. Address par-
titioning is not expected to take any additional cycles (although transmission of the address
itself will take multiple cycles depending upon bus width). Due to the misaligned transfer of
addresses in hardware-only compression, there will be some extra transitions and power con-
sumption. To mitigate this problem, address offsets (offset w.r.t. previous address: mostly
small magnitude) and address XORs (XOR w.r.t. previous address: mostly zeros) can be
used. Of course, in these cases, the previous address needs to be saved at the receiving end
in order to determine the new address. Finally, since logic scales better in size, speed, and
power consumption than long bus wires, with technology improvements, the logic overhead
to perform hardware-only compression and decompression will reduce relative to the savings

in bus lines.

3.2.4 Hardware design
The compression and decompression hardwares for HOC at the sending and receiving ends

are shown in Figs. 3.1 and Figs. 3.2. We propose a hardware structure shown in Figs. 3.1

72

with multiplexers to split ther-bit original address intg = | g | partitions and place them

on the narrow bus db lines in j successive cycles. The last portion of the address is either
transmitted in the j + 1)th cycle, with some of the bus lines unused, or concatenated with
the first part of the next address. Conventional barrel or logarithmic shifters can also be
used but the overheads in terms of area may be higher. We ugebiheegisters labeled
R1,Ro,...,Rj41 to store the shifted partitions at the end of each cycle. These registers (flip-
flops) do not add to the overheads of our scheme since bus driving circuitry (based on static
or dynamic CMOS logic) already contains flip-flops or latches for each bit-line. It can be
noted from the way the hardware is organized that during each clock cycle, the contents of
registerR; are latched on to the bus and at the end of the cycle, the contéRiscé selected
through the 2 : 1 multiplexer and latched iriRp and so on. The default hardware shown in

the figure uses the concatenation mode of operation, where unused lines in the last cycle of
transmission are used for the transmission of a part of the next item, if available. The normal
mode of operation where concatenation is not used can be enabled by sending an appropriate
signal to the control unit. The operation of the decompression hardware is analogous to the
compression hardware described above. Portions of the address that arrive are first placed in
the registeiRj1 and then shifted into the next register in subsequent cycles and so on until
the first portion is in registdr;. At this time, multiplexers are used to shift the address onto

the outgoing lines.

73

‘pua bBuipuss 1e
alemp.ey uoissaldwo)d :DOH 10} arempieH:T € ainbi4

LINN

TOYLNOD
T

| | gy gy
Qrﬂﬂl o TE Q ; W w .. ;
m,‘: “““ CTTTTTTrTTriT ey W “““““ Tt W‘ I Tty W “““ J “““““ F e S
0 -1 gl-u qreu | e 1+9-u | g-u [-9-u ¢-u z-u|-u

DONILAIHS ASVO LSIOM SHNI'T SSHIAAV DNIINOONI

74

‘pua Bulniedal Je arempiey
uoissaidwosag :DOH Jo} arempireH :z's ainbiq

SHNI'T SSHIAAV DONIOD.LNO

0 | . [

q

P

Nm”
|

- J T Sunyiys 9sed 1SI10 M \vi
[

S)1q [OTUOD Y

LINO
TOYLNOD

W —

75

3.3 Wire Layout Optimizations

Using compressed buses grants an extra degree of freedom while performing global wire
routing for high-performance designs. Common optimizationsrigeshielding(inserting
power or ground wires on both sides to protect a wire on the critical path from inter-wire cou-
plings) andsoft spacinga technique that automatically maximizes spacing between tightly
packed wires within given area constraints) are greatly facilitated by using compressed buses.
Such optimizations go a long way in achieving signal integrity and timing closure in current
nanometer designs [46]. Although these techniques have been used in the VLSI design com-
munity for a long time, our work is the first to examine their implications in the context of

compressed buses.

3.3.1 Wire spacing

In this simple scheme, the wires in a compressed bus can be spaced further apart while
maintaining the area footprint smaller or equal to the original bus to minimize the wire delay
and coupling capacitance. Wire spacing involves no additional cost overheads and it will
reduce wire delay and bus energies since inter-wire capacitances are inversely proportional

to spacing.

3.4 Simulation Setup
In this section, we first describe our simulation environment. Next, we describe how we
calculated various metrics like bus utilization, extra cycle penalty, and energy ratios that we

used to estimate the performance, power consumption, and cost overheads of our schemes.

76

3.4.1 Simulation environment

Processor Core

Clock rate 600MHz

Issue width | 6 (4 integer and 2 floating point)

LSQ 32 entries each

Memory System

P—L1 bus Non-pipelined; 64-bit data, 128-bit instruction, and 44-bit address lines

L1 D-cache | Virtually-indexed physically-tagged (VIPT), 64KB, 2-way set assoc., 64B block
size, LRU policy, 3 cycle hit latency, write-back

L1 I-cache | Virtually-indexed virtually-tagged (VIVT), 64KB, 2-way set assoc., 64B block
size, LRU policy, 1 cycle hit latency

L1 MAF 8 entries

L1—L2 bus | Non-pipelined; 128-bit data/instruction lines and 38-bit address lines (21 bits for
block index and 17 bits for tag)

L2 cache Physically-indexed physically-tagged (PIPT), 2MB, direct-mapped, 64B block
size, LRU policy, 12 CPU cycles hit latency, write-back policy, operating at 2x
CPU clock cycle

L2<~M bus | Non-pipelined; 64-bit data/instruction lines and 38-bit address lines

DRAM 256MB, operating at 2x CPU clock cycle, 96 CPU cycles hit latency

Benchmarks

CINT2000 gcce, gzip, parser, vpr, twolf, mcf, crafty

CFP2000 applu, swim, wupwise, lucas, art, ammp, equake

Sample 10 million committed instructions after skipping 500 million committed instruc-

tions initially.

Table 3.1: Target System and Benchmarks:Default configurations for our target system, bench-
marks, and sample sizes used in our simulations. LSQ= load/store queue, MAF= miss address file.
This target system is broadly based on the Alpha 21264 processor.

3.4.2 Bus utilization

In the first phase of simulation, the traces collected were used to determeneetiagie bus

utilization (BU) for each bus. The BU for a bus shows the extent to which the bus is utilized

on the average. It also points to the amount of HOC possible in the bus. Also, by looking at

the BU, it is possible to decide if a particular bus is worth compressing or not. For example,

a bus with a BU close to unity is not worth compressing since the performance penalties may

77

be severe. For any address trace during the sampling windows the number of address
references for a particular bus type{R1 load data address (LDA), 2L 2 instruction and
data address (IDA), or L.2M IDA), then the BU averaged overbenchmarks, denoted as

Unus type IS given by the following relation.

> it 1 Mbus type
S ; Simulation sample time in CPU cycles

Ubus type=

3.4.3 Performance penalty and wire delay

The extra cycles that a benchmark program running on the modified target system (system
with address compression) takes compared to its running time on the default target system
(system with no compression) is reported as the performance overhead due to address com-
pression. Since we use an event-driven simulator, our calculation of performance overhead
includes any latencies due to pipeline stalls also and not just the latencies due to address
transmission. The metric that we use to measure the performance overheadvsrduge
percentage extra cycle penaltigCP) which we define as follows forbenchmarks. Here,
tc is the total time (in terms of processor cycles) for execution of the sample window with
address compression/decompressiontgigha is the total time for execution of the sample

window of a benchmark (without HOC).

ECP= Zin:1<tC - toriginal)

- x 100
zizltoriginal

To compute the wire delay, we use the Elmore delay formula which gives the delay of a

wire routed in the global layer [53]. The metric used to evaluate the wire delay improved

78

when wire spacing is applied is tivare delay ratio(WDR). Here,wds is the wire delay
for the compressed bus with wire spacing avndiginal is the wire delay for the original

uncompressed bus.

st

WDR= ————
Woriginal

3.4.4 Bus energy model

In on-chip buses, energy is dissipated dusdif-transitiongtransitions on the capacitance
between a bus line and the ground plane) emuabling transitiongtransitions on the capac-
itance between adjacent bus lines) [59]. The total energy dissipated due to self-transitions
can be computed using the following expressigy) f I Ns edge Cs edget Ns middie: Csmiddle
whereNs eqge COrresponds to the total number of self-transitions occurring in the two edge
wires of a busCseqgelis the self-capacitance of an edge wigmiqdie is the total number of
self-transitions occurring in all the non-edge wires, @3ghiqdie IS the self-capacitance of a
non-edge wire. Note thélls eqge™> Csmiddle in current technologies due to thenging effect
of the isolated side-wall in each edge wire. The effect of fringing fields are non-negligible in
current technologies because wire-height and hence side-wall area is more than wire-width
for global and intermediate metal layers where most long buses are routed.

The total energy dissipated due to coupling transitions can be computed using the fol-
lowing expression:Ecoupling ' (Ncharge+ Ndischarget 4 - Nioggle) - Ce, Where Nenharge is the
total number ofttharging coupling transition§00 — 01, 00— 10, 11— 01, and 11— 10),

NgischargeiS the total number oflischarging coupling transitionf01 — 00, 10— 00, 01—

79

11, and 10— 11), Nioggle is the total number ofoggletransitions (01— 10 and 10— 01),
andC; is the coupling capacitance between two adjacent lines of the bus. Not&;thgs
Csmiddle andC; are values that depend on technology and the layer of metal being con-
sidered. We used values for these parameters obtained using TSMCglobal wire di-
mensions and applying formulas used in Berkeley predictive technology models (BPTM) for
interconnects [7].

For off-chip buses, only self-transitions need to be considered because inter-wire spacings
are large; fringing effects are also negligible since wire-widths are substantially larger than
wire-heights. In our simulation results, we pkterage on-chip energy ratidon—chip, and
average off-chip energy ratjdsft_chip, instead of absolute energies. These are obtained
by summing the compressed bus energies for 14 benchmarks and dividing by the sum of
original bus energies for the same set of benchmarks. The average on-chip energy ratio is

defined as follows fon benchmarks.

n
> i—1 €narrow on-chip bus

Eon—chip =
Zinzl €original on-chip bus

The average off-chip energy ratio is similarly defined.
In the following sections, we describe the experiments that we conducted to show the

efficacy of our proposed schemes and discuss the results for each.

3.5 Bus Utilization and Selection of Bus Width
We calculate the average bus utilization for each of the three buses, namdl{, EDA
bus, L1—L2 IDA bus, and L2-M IDA bus as mentioned earlier in Sec. 3.4.2. We also calcu-

80

Bus Utilization Analysis

0.300 1200.000
0.265 B Average 1088.000

0.250 | — Percentage sy 1 1000.000

0.200 B 774-570 B 800.000 :'DU
g a
1= &
= =
§ 0150 - - 600.000 &
= %
- Z

0.100 - - 400.000

0.050 - - 200.000

0.000 - - 0.000

P—L1LDA L1-L2 IDA L2—M IDA
Bus

Figure 3.3: Average Bus Utilization and Percentage Standard Deviations) Across
Different Buses.

late the percentage standard deviatigy) Of the bus utilization w.r.t. the average utilization

for each benchmark and report this value in the figure. The percentage standard deviation
of the utilization is an indicator of the burstiness of the address traffic due to each bench-
mark program. Using the utilizatiotyystype for a particular bus obtained from Fig. 3.3,

we choose the narrow bus widtifor the remainder of our simulations according to the fol-
lowing relation:nx [U 4 f x (1—U)]. Heren s the original bus width and is a parameter
calleddegree of HOCwhich denotes the portion of the underutilized capacity of the bus
that we want to use. Thud, = 1 represents the original bus width (no HOC) aine- 0
represents the case where the utilization of the compressed bus will be ideally 100%. The

maximum savings in cost can be realized without performance penalty for HOC for this bus

81

width assuming that references are spaced evenly apart. Intermediate vafuidsedd.25
and 05 represent different degrees of HOC and hence different cost savings. We observe
from the figure that, as expected, as we move away from the processor, buses become more

and more underutilized and bursty.

3.6 Performance Overheads

3.6.1 Extra cycle penalty for same degree of HOC across all buses

We first conducted experiments keeping the degree of H@alue same for all buses in
the system. Thus, different bus widths were used for buses at different memory levels. From
Fig. 3.4, we observe that the performance penalty increases non-linearly as the degree of
HOC is increased. The increase follows the trend cyirvé®.1968¢ +0.8605¢ — 5.320X -+
12.087. This non-uniform increase may be as a result of the fact that misses at that level are
not evenly distributed. For the case= 0.1, we observe that about 31% extra cycles may
be needed for the program to complete execution when concatenation is not used. For lower
cost savingsf{= 0.9, f = 0.75, andf = 0.5), the performance penalties are still substantial
(about 7.5%). Another interesting observation is that the performance penalty remains at
about 7.5% until almost 50% bus compressidn=0.5) is reached. This is because, for
values off ranging from 1 to 0.5, regardless of the degree of HOC, two cycles are required
to transmit each address. Beyohd= 0.5, reducing the bus width by a few bits is enough
to double the number of cycles needed to transmit the address. This explains the sudden

increase in performance penalty affe= 0.5. From the same figure, we also observe that

82

"pauodal 10U SI anjeA ay) aduay pue G 0=} 10} Sasnq

IN“—Z7 puergré-a|qissod 10U SI uoeuaIeIUO0) "UoRUSIRIUOD YIIM UoiRZI|IN [enlok ayl *Bpue ‘suonejnwis wodj
uonezinn renoe ayrdonezinn sng paoadxs ayl sjuasaldaicipsaldwod snq Jo Junowre abejuadiad sjuasaidal y

‘(sug un) yipim snq siuasaidal Mg 'snq YAl N« PUe ‘vadl 21T 'vd1 1d«sesng 8aiyi |je o1 paijdde si uoissald
-Ww09 Jo aalbap awes uaym (uoieualeduod 1noyum pue yum) Ajreuad asuewiopad :DOH 10} S8|0AD enx3:1's ainbi4

(/) DOH Jo 3133

180°0 080°0 00T°0 %IT ¥ [9€0°0 9€0°0 €¥0°0 %9T 0T | 0200 0200 %0S 61 |VI0°0 ¥10°0 #I0°0 %9L 6T |TI0°0 TIO0 CI0'0 %68 v€ VAI IN—TT
Y610 €61°0 ¥ST0 %ET S [LOT'0 LOT'0 OTI'0 %9T 0L | 7T90°0 #90°0 %0S 61 (Iv0°0 I¥0°0 ¥H0°0 %9IL 6T [SE0'0 SE0'0 LEO0 %68 ¥E VAITI—T1

T19°0 809°0 €8L°0 %¥E ST [S0S'0 $0S°0 T6S°0 %Sh 0T | €6£°0 8IV'0 %E9 8T |60€°0 90€0 STED %I8 9¢ |08T°0 SLT0 98T0 %l6 OF TT—d
el e N qd Md|en en N d md| en N d Mdaj|dken en N d Md|own en N d Md
1'0=J ST0=3 $0=J SL'0=) 6°0=J
0
&
S =
_—— T ——a | 8
. o = b~ S
in B in = in UL
n S w &
))) eqou
o] e
)
- e
N S5
o uoneudleduo)) M Q
)
g w UoBUIIBIUO)-UON [@
= W - S€
w
w3
uoISSAIdwo) AJUu-dIBMPIBH J0J A)[BUd] IPA) XX

83

address concatenation helps lower the performance penalty a little (up to 2.3%) in some cases
where concatenation is possible. We will see next how applying different degrees of HOC to

different buses based upon their differing performance sensitivities yields better results.

3.6.2 Extra cycle penalty for HOC in individual buses

The above results point to the fact that it may be unfair to compare across narrow buses at
different levels of the system after applying the same degree of HOC in all of them. This is
because a bus closer to the processor which is utilized more will suffer a greater penalty due
to reduction in bus lines than a bus at higher level of the memory system. Hence, we study in
Fig. 3.5 how the degree of HOQ) affects the number of extra cycles when applied to one
bus only at a time. From the plot, we observe that for degrees of HP&dser to unity, the
P—L1 LDA bus is the most sensitive followed by the 1.2 IDA and L2—M IDA buses.
This is because the-PL1 LDA bus is the most utilized among the three and reducing its
width causes most penalties in the system. However, as thd P1DA bus width is reduced
more and more, beyontl= 0.5, the performance penalty begins to increase sharply, thus
making the L1-L2 IDA bus more sensitive than-PL1 LDA bus to HOC. This is because
for a reduction in bus width corresponding to valuesfdfom 0.5 to 0.2, the number of
cycles taken for transmission of an address on the-L2 IDA bus increases from 2 to 5
cycles, whereas the corresponding number of cycles for-abhIPLDA increases from 2 to
3 only. The L2-M IDA bus has much lesser penalties till abdut= 0.2, possibly because
of the high degree of underutilization of that bus.

To compare fairly across buses, we keep the extra cycle penalty when HOC is applied to

84

Extra Cycle Penalty for Hardware-Only
Compression Across Individual Buses

N
wn
]

+-P—L1LDA
-*L1-L2 IDA
==12—-M IDA

(]
=]
I

p— p—
= wn
I I

Percentage of Extra Cycles
wn

=]
|

0 0.1 015 0.2 0.25 0.3 0.35 0.4 045 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 09 095 1
Degree of HOC (f)

Figure 3.5:Extra Cycles for HOC: Extra cycle penalties for different degrees of HOC for
P—L1 load address, L+:L2, and L2—M buses.

only one bus in the system at a nominal value (say, 5%) and find the valti¢hat gives
this value for each bus. This value, denotedfgge for a bus, represents the maximum
degree of HOC possible in that bus such that the extra cycle penalty in the system does not
exceed a given value. Thedg,sevalues for different buses can be obtained directly from
Fig. 3.5 that shows the extra cycle penalty as a functiof foir three buses. For a nominal
system performance penalty of 5%, we find that the valudstbét give us 5% performance
penalties for P~L1 load, L1—L2, and L1—~L2 address buses are 0.354, 0.354, and 0.12
respectively. We consider the maximum among these vaiygs(fmax=0.354 is obtained
for P—L1 load address and L2L2 bus). Now, we introduce a parametszlative degree

of HOC, p, that can take values between 1 anddax. The degree of HOCE, that we used

85

"OOH Jo soalbap
dAIR|al JUaJaIp Jo) sanjeuad a]9A2 X3 :DOH 10} S3J9AD enx3:9°¢ ainbi4

(d) DOH JO 3133(] dANEPY
ST8'C=d 89¢°C=d 6’'1=d 9IS 1=d

6v6'8
(TE0'0)%YE (9€0°0)% 6T (€10°0)%PT (SS0°0)%8T (SLO0)%HET VAI N<71
(E€0°0)% 001 (LEO'0)% Y8 (SP0°0)%89 (850°0)%€S (080°0)% LE VAl 7T 11
#97°0)% 001 (I8T°0)%88 (I€E€°0)%SL (88€°0)%19 (19V°0)%TS VATIT'T—d

S8C=d 89¢C=d TI6’'lI=d ISV'I=d I=d (*n) oney *dwo)

M"

p8TCI

-Vl

uoISSdIdwo)) A[UuQ-dIeMPpIe J0J A)[BUd] L) vIIXH

SI[IA)) BIIXY] JO A3RIUDIIJ

86

previously is related t@ as follows: f = fpasex p.

3.6.3 Extra cycle penalty for different relative degree of HOC

For different values of the relative degree of HOC, we run simulations and measure the
extra cycle penalty. The results are shown in Fig.3.6. In this figure, we find that extra
cycles decrease as the relative degree of HOC is increased from 1 to 2.825. In the last set
(p=2.825), the P-L1 load address bus and the+1.2 bus are uncompressetl £ fpasex
p=0.354x 2.825= 1). Although these buses are uncompressed, the other bus\iDZan
be compressed to 34%, according to our results, with only an extra cycle penalty of 0.613%.
Thus, applying HOC intelligently in address buses in the memory hierarchy can yield much

better cost savings with low extra cycle penalties.

3.7 Energy-Efficient Transmission Formats

To minimize power overhead of HOC, we propose various techniques to ensure the best
energy-efficient transmission format for uncompressed information transmission on narrow
buses. An efficient transmission format is important because the number of self and coupling
transitions and hence bus energy consumption/dissipation depend on relative positioning of
different bits in the uncompressed address. Next, we present our proposed techniques. Each
successive technique we present is an improvement over the previous one and results in
progressively better energy reductions. The results are collected by simulating 50 million

committed instructions after skipping 2 billion committed instructions initially.

87

3.7.1 Technique 0 (T0): HOC baseline format

Our proposed baseline transmission format, TO, for HOC is shown on the left in Fig. 3.7.
The original address is split from lower order to higher order into multiple partitions and
placed on the narrow bus in successive cycles. In the design of this format, we followed

certain principles as described below to ensure their energy-efficiency.

e To minimize transitions on coupling capacitance between neighboring lines, correla-
tion between the bits is necessary, i.e.jsthould be correlated with both bit- 1 and
i — 1. In our transmission format, different partitions transmitted in successive cycles
are taken from the original address from lower order to higher order to ensure highly

correlated bits are placed together. This also helps limit decoding complexity.

e During each cycle of transmission, the bits are placed on the bus starting from the LSB
so that inactive lines (lines that do not carry any new data in that cycle) are placed in

the higher order portion of the bus

Our TO technique targets to minimize both self and coupling transitions and is different
from the TO code [6], which is a bus encoding scheme designed to minimize the switching

activity the address bus.

3.7.2 Technique 1 (T1): HOC bus arrangement

It can be observed easily that, with the baseline transmission format, the addresses have
to be transmitted in full in multiple cycles, bus energy dissipation will be higher because of
misaligned bits, i.e., bits that have no correlation with bits in the same position transmitted in

88

the previous cycle—causes a self-transition—and bits that are uncorrelated with neighboring
bits in the same cycle which causes coupling transitions. In this section, we propose a new
transmission format based on the following principles of arranging the different fields to
minimize self and coupling transitions.

Due to the highly sequential nature of addresses, the lower order bits of the address will
be more active than higher order bits. To reduce the coupling energies of the lower order
portion of the bits transmitted on the compressed bus, we plach& LSB of the entire
portion in the MSB line of the compressed bus for each cycle as shown in the figure on the
right in Fig. 3.7. Thus, the bit J; now occupies the LSB line of the bus and its coupling
energy is reduced because it can no longer cause a toggle transition withiieRurther,
the U bit which has been placed next to the original MSB bit also results in lesser coupling
energies since its neighbor is expected to change state less frequently. Also, the edge lines
have less coupling capacitance since they have only one neighboring line and this will lead

to lesser coupling energies.

3.7.3 Technique 2 (T2): HOC Idle-bit insertion

When an address is sent in multiple cycles over the narrow-width bus, the last cycle of
transmission of the address is likely to be poorly utilized when the compressed bus width is
a non-integral fraction of the uncompressed address width. In such casafietbiés can
be used to reduce coupling energies by placing them betaeterebits in different cycles
of the miss. Note that if a bit is designated as idle in the current cycle, then it means that it

holds the value from its previous cycle. Thus, an idle bit can never have a toggle transition

89

Original Address [U, U,

Last cycle %U37 U, Last cycle |Us, U, Us

2nd cycle |U U, 2nd cycle [UgU s U,

1st cycle (U, U, 1st cycle |U,U, U,
Technique 0 Technique 1

Figure 3.7:Proposed Bus Arrangement TechniquesThe figure on the left shows the new
basic transmission format that we propose for HOC. The figure on the right further reduces
energy by rearranging some bits to reduce unwanted coupling transitions.
with either of its neighboring bits for the current cycle.

Given a fixed number of idle bits that we can insert, we assign the maximum possible
number of idle bits to each cycle starting from the first cycle. Farlit compressed bus
the maximum number of idle bits that can be assigned to each cylalg'2y. Now, suppose
k bits were assigned to the first cycle, then the idle bits are interspersed alternately with
active bits in the cycle starting from an active bit at the LSB to achieve maximum benefits
for coupling energy reduction. After assigning to the first and second cycles as above, if
idle bits remain, then they are assigned to the third cycle and so on till all the idle bits are

exhausted.

3.7.4 Technique 3 (T3): HOC address encoding

Transition signaling code involves a simple bit-wise XOR operation of the current word

to be transmitted on the bus with the previous word to minimize transitions for off-chip

90

buses [61]. In address buses, due to temporal and spatial redundancy of the bits, the result
will have more zero-valued bits than the current address. Thus, potentially many self and
coupling energies can be reduced by XOR-ing the address word before placing on the narrow
compressed bus. Note that computing bitwise XOR of i@t addresses requires constant

time and little hardware and hence this will not add much extra latency to the bus interface.

3.7.5 Technique 4 (T4): HOC transmission encoding

In the transmission encoding, we again XOR each bit of the new address word with the bit
transmitted at the corresponding bit position on the bus in the previous cycle. Since T3 step
yielded more zero-valued bits, T4 will make the address pattern similar to the one transmitted

on the bus in the previous cycle thus reducing both self and coupling energies.

3.7.6 Techniques 5 (T5) and 6 (T6): Using idle bits as active shields

In this technique, we use the idle bits that we inserted using the idle-bit insertion tech-
nique discussed earlier as active shields. In the default idle-bit insertion technique, the bits
designated as idle held the value transmitted at that bit position in the previous cycle. We
mentioned that toggle transitions for that bit with its neighbors can be eliminated using this
technique. To further reduce total coupling energy by eliminating the occurrence of coupling
charge and discharge energies at the cost of some self-energy, we propose to change the value
held by the idle bit according to the changes of the values of its neighboring active bits. In
T5, the value held by an idle bit becomes equal to its adjacent bits when the adjacent bit pair

transitions from 00— 11 or from 11— 00. In T6, the value held by an idle bit becomes

91

equal to its adjacent bits when the two adjacent bits are equal. Some self energy is expended
due to the extra switching activity of the idle bit due to this scheme but that will be a small
portion compared to the savings in coupling energy. Our idle-bit shielding techniques are
different from the active shielding in [31] because our technique is an info-pattern dependent
shielding approach.

On-chip and off-chip energy results for all the proposed transmission schemes$fi2_1
address bus are shown in Figs. 3.8 and 3.9. T1 is slightly better, 1% more on-chip energy
saving, than TO. Since T1 doesn't affect the self transitions, the off-chip energy is the same
as TO. On average, idle-bit insertion technique, T2, causes more on-chip and off-chip energy
than TO. This is due to the increased charge and discharge transitions cause more on-chip
energy than the reduced toggle transitions. However, after we apply T3 on top of TO, T1,
and T2, 5% on-chip energy saving can be obtained compared to the uncompressed bus and
18% off-chip energy improvement achieved w.r.t. TO. For off-chip bus, T4 provides the best
improvement, 45% w.r.t. TO. T5 and T6 yield about 8% and 16% on-chip energy reductions

on the average, respectively.

3.8 Address Compression and Bus Encoding

Bus-invert (Bl) encodinfs0]: Bus-invert encoding was one of the original techniques pro-
posed for reducing self-transitions on buses. The scheme examines the number of bits that
are different (Hamming distance) between the current input pattern and the pattern transmit-

ted on the bus in the last cycle. If this number is greater than half the bus-width, all the bits

92

‘'sanbiuyoa] pasodolid ayi || Buisn uononpay Abiau3g diyd-uQ:g s ainbi4

8¢ (43 8¢

n T T N . | 3 4

(s31g) WPIA sng passaaduro)

ﬂﬂ

0¢

91

(4}

8

£313uy ddueynede)-JPS 0
£313u7]

ddaey) pue I3aeydsI(|
:duenede)-suridno) [

A31ouy] ddaey)
:duenede)-suridno)]

mmmw

%T0TC %BTESYT BTELIL
% €98°1- %8EV'0C %ESS'S
%BY8E’1- %BYOL'6 %96¢°S
BIOV'LL- 8V’ 0C %819°te-
%698°091- %619°t %LED'S8S8-
BIILTS- 619°E %YL6'(E-
%BIEY'CS- BE00'0 DeEYEEe-
UIA] XBIA ‘SAVY

N
E:____ ;__:__ IhTh

9L
SL
L
€L
<L
L
0L

guiaes A310ud diyd-uQ

SAWIAYDS UOISSTWISUR.L], JUIJJI(]

SSODY uoneLIe A oney As3xuy digH-uQ

oney A3uy digyd)-uQ

93

‘'sanbiuyoa] pasodoid ay) || Buisn uononpay Abiau3g diyd-4o:6°c ainbi4

8¢ (4>

676’1

AN
€L
L
LN
OLO

(s1g) WPIM sng passaxdwo)

8ELT|

8¢ L4 0¢ 91 (4! 8
000°0
- 00S°0
- — - 000°T
s > =) S 0)
= * = % 5 = - 00S'T
S = 2 2 .
S - S = - 000°C
K o
= e sk
Do = - 00S°T
&8
NI o S L aoa-
Wmmm mm 000°¢
%Y1 %8S0'SY %8SO°SY PL
%96V €~ %689°8E %6SL'LI €L
% 68T SL- %SIV'ST %OLTS- <L
OL ‘yrm
UIA XBJA *8AYV juuwAocxdur A3x3ud diyd-J30O

SOUIYIS UOISSIWSURL], JUIJJI(Q
SS0DY uoneLIe A oney Asxuy digy)-jJo

oney A3uy diy)y-3o

94

of the current input pattern are inverted and a sepamaéztline is held high. Else, the value

is transmitted in original form and the invert line is held low.

Off-Chip Energy Ratio Variation Across Different
Transmission and Encoding Schemes

o0

o
3.000 1 S S ETO
o kv -
< < 2 2 B T0-BI
Ten < a OT4
2,500 - N o a
n Q - B T4-BI
o S 85
= N g < (]
=) N
£ 2000 | |=
) ad
=]
3 7
: -
= 1500 | -
<t

2 ok o 22 5% 23
6 =< MR =< S =
I — \mi g —
£ 1.000 |
o

0.500 -

0.000 -+

8 12 16 20 24 28 32 38

Compressed Bus Width (Bits)
Figure 3.10:0ff-Chip Energy Variation Across Transmission and Encoding Schemes.

Odd/even bus-invert (OEBI) encodifwy]: Since adjacent wire coupling occurs between

an even-numbered and its adjacent odd-numbered wire on a bus, this method encodes even
and odd bit positions separately and uses two invert lines to indicate one of four modes of
transmission: 00 — none of the bits are inverted, 01 — even bits are inverted, 10 — odd bits
are inverted, and 11 — all bits are inverted. A two phase transfer method (TPTM) was also
suggested to prevent the occurrence ofttgglecase (0110 or 10—01) between any two
adjacent bit-lines. The toggle case results in the maximum power energy dissipated since
the effective coupling capacitance between the toggling wires is four times the normal value.

95

To minimize toggling, one of the lines in the toggling pair is delayed by one cycle, i.e., 01
becomes 11 or 00 and finally 10, which results in less energy dissipated than the worst case,
although it costs an extra clock cycle.

Coupling-driven bus-invert (CBI) encodirj@4]: This method examines all pairs of ad-
jacent bits and counts the number of coupling transitions. The current input bit pattern is
inverted if the coupling effect of the inverted pattern is less than that of the original pattern.
Since odd and even lines are not handled separately, this scheme requires only one extra
invert line.

In this study, we apply three encoding schemes on HOC address buses to investigate if bus
encoding can decrease actual energy further. Since TO is our baseline transmission format,
T4 is best for off-chip buses, and T6 is best for on-chip buses, we apply encoding on top of
these three techniques. As we can see in Fig. 3.10, Bl with TO provides better off-chip energy
saving than TO itself. For Bl with TO, off-chip energy ratio is reduced by 0.09 compared to
TO whereas T4 itself can improve the off-chip energy by 0.98 w.r.t. TO on average. We
also apply Bl on on-chip HOC address buses to see how it performs. Fig. 3.11 shows the
on-chip energy ratios across these schemes. The three encoding schemes actually consume
more on-chip energy than without encoding on HOC address buses. The extra energy might
be caused by the extra control lines used in the schemes. Our T6 without any extra control
lines, which reduces on-chip energy by 15%, is the best for on-chip HOC address buses
among all schemes we examine. So for both off-chip and on-chip compressed address buses,

our transmission techniques are much more effective than the encoding schemes.

96

‘SaWwayds

Buipoou3 pue uoIsSIwSuURI] SS0I0y uoneleA Ablau3 diyD-uQ:TT'E a4nbi4

(s319) WPIA sng passaaduro)

(43 8¢ 144 0¢ 91 4! 8
= - = = = = = = - = = = = -
2] T A=<BEx = | T =B =A== E A= 2] T
e=Ner=Rer=Rer=Re= T S5 = ST = CT A==
SA7 S55 857 855 AT 855 A7 855 SRR SRS SRR 855 SAF 8
= 3 N N N N = =
UL R L R TR R T TRET L o
00°1 S
000z &
I
- 000°€
=
- 000'v =~
9e
i I 1 <
= - 000°S
- - B LITTI6Y- %TH0'89T- %OITILE- 1990-9L ©
- i BIV6'y- B60OL'ST %SST'S I1940-9L - 0009 &
%1911 HBIEYYL BEIE6 I194-9L .
%BWTT BIESHYT %SESST 91| 000°L
A310u duILEde)JPS O %908°CIS- %8S6'LIT- %090°09¢- I9490-0L
A31ouy s8Ry pue IZaeYISI| DIY8YS- BYIVEL- %TE01Y- 1949-0.L
"ouzazuwamv-w:_%sco m %ESYLS" WIOSVYI- %HYIi6IY- I9-0L
A31uy BIEV'CS- BOTV'ET- %LOT'SE- 0L
3daey) :ddueinede)-3urdno)] Ul XA ‘SAY guraes A3xuy

SOUWYDG SUIPOIUG] PUEB UOISSIWUSUR J,
JUAIJJI(J SSODY uoneLIe A oney Asruy dig)H-uQ

97

3.9 Performance and Energy Optimization

with Wire Spacing

As mentioned in Sec. 3.3.1, the wires in a compressed bus can be spaced further apart
while maintaining the area footprint smaller or equal to the original bus to minimize the
wire delay and coupling capacitance. In this study, we spaced the wires of the compressed
L1—L2 buses at different spacing degrees (SD), the percentage of original bus area, to im-
prove performance and reduce energy. When the spacing degree is less than 108, 1
of the original bus area can be saved.

Fig. 3.12 shows that the less the number of bus wires the compressed bus has, the more
effective the wire spacing scheme is. This is because narrower compressed bus provide more
extra area for spacing. The wire delay decreases dramatically when the spacing between
wires increases. For 8-bit compressed bus, 88% wire delay reduction can be obtained when
SD is 100%. Even for 32-bit compressed bus with the same SD, the wire delay can be
reduced by 27%. On average, the wire delay can be improved by 61% with HOC and wire
spacing. In Fig. 3.13, we examine the performance improvement for the compressed buses
with wire spacing. HOC with wire spacing can actually improve the performance up to 0.8%
to 15% w.r.t. original address bus. As shown in Fig. 3.14, HOC with wire spacing can also
reduce on-chip energy to large extent. With T6 and wire spacing, up to 88% energy can be
reduced for 8-bit bus and 42% for 32-bit bus, whereas T6 itself can only reduce 14% and

20% for 8-bit and 32-bit buses, respectively. On average, 60% on-chip energy can be saved

98

Wire Delay Ratio Variation Across Different Degree of Wire Spacing

Max. Percentag Delay Reduction

Bus

88.107 %
81.082 %
73.130%
64.056 %
53.604 %
41.435%
27.087 %

8-bit

12-bit
16-bit
20-bit

24-bit

%001

%06

%001

%06

%08

%001
%06

%08

% 0L

%001

%06
%08

pIb 0o %0L

%09

%001
%06
%08

9870 =—"= %0L

%09
% 0S

%001
%06

6v1°0== %08

% 0L
%09
% 0S
% 0¥

%0¢

%0

%001
%06

%09

% 0S

32

28

%08

24

% 0L

20

16
Compressed Bus Width (Bits)

Figure 3.12:Wire Delay Reduction Using HOC with Wire Spacing.

12

% 0y

800 -
.600 -
0.400 -

oney Ae[d(dIM

99

0.000

‘Buioeds alp YA SUIPIM
sng passaldwo) 1ualiaylg SS040Y Juawaroldw| asuewlopad:£T s ainbi4

Supeds 1M 1BYPEIPLHO NID T

(SNY) YIPIA Sng Passdadwio) 03 paonpad si ‘S9Ad gD T ‘Adudje| snq udym
juduRAoIdun duewrio)rdd 3ejuddadg (<7

€19°¢-

\ml

cEs’I-

(%) yuduRAoIdUW] UBWLIOJIDJ ITBIUNDIIJ

- 0¢

[<SE ¢SO I<vm v TI<€ld <C¢—¢l IO

sunedg AIIA\ M SYIPIAA Sng Passdadwo)
JURIRJJI(J SSOIDY JUIWIAOId W] UBWLIOJIdJ

100

‘Buioeds M YU SUIPIM
sng passaldwo) ualaylg Ssoioy uonanpay Abiau3 diyd-uQ:#T°c aIinbi4

(s11g) WPIM sng passaaduro)

(43 8¢ 1 (4 0¢ 91 4! 8
k. e sk ek e p—t k.
SI\S S| \o| R S|\ R S\ RN S| \S| R S\ N S| \S| R U &= S|\ R A\ U= W N
001000100001000001OOOOOOLOOOOOOO10000000001
SIEEISIEESTEE PSSP S S S S S S S S e S RS R S RS RSN
_ - - _ - _ - 00T°0
- 00¥°0
- 009°0
- 008°0
%198 TY nage] 001
% 6ETSS 11q-87 L 00T'T
%861°C9 Nq-pz
A313uy duejnede)-J19S %0L6°€9 Nq-02
A3aauy d8aey)) pue 3xeydsI(q %6S6°9L Nq-91
"ouSw:u@QwO-wEwnch O % 7ST'ES NqQ-71
A31ou7] o) e §
3 . de~-Sund %€V 1°88 1q-8
IsIe) Pouribede)-suljdnoy (] Suiaeg ASaouy winwixey — sng

suredg JIIAA JO I3 W
SSOIDY uoneLIe A oney Asruy dig)y-uQ

oney AS1uy digH-uQ

101

using HOC with T6 and wire spacing.

3.10 Conclusions

We proposed and analyzed the overheads (extra cycles required and power consumption)
of a hardware-only compression scheme to reduce costs and improve power consumption of
underutilized address buses in the memory system. Our simulations show that by carefully
choosing the relative address bus widths at different levels of the memory system, hardware
only compression schemes can result in reductions of up to 34% in number of lines of a
L2—M address buses with only a 0.613% increase in number of cycles required for exe-
cution. For 8-bit compressed bus, 88% wire delay reduction can be obtained when SD is
100%. On average, the wire delay can be improved by 61% with HOC and wire spacing.
Up to 0.8% to 15% performance improvement can be achieved ferllZLcompressed ad-
dress buses with wire spacing. We have also proposed energy-efficient transmission format
to minimized on-chip and off-chip energy. On average, 16% on-chip energy reduction can be
obtained using our best transmission technique, T6. With wire spacing, T6 can provide up to
88% energy saving for 8-bit compressed bus. On average, 60% on-chip energy can be saved
with HOC and wire spacing. Off-chip energy can be improved by 45% with T4 compared to

the baseline transmission format.

102

Chapter 4

Analysis of Dynamic Address

Compression Schemes

4.1 Introduction

Address compression, when applied to on-chip address buses in current microprocessors
or systems-on-chip (SoCs) can potentially reduce or mitigate some of the problems asso-
ciated with interconnect scaling in current nanometer-scale technologies. Employing com-
pressed addresses for certain buses in the design will help reduce the number of address
lines needed for those buses, result in less area overheads and lower costs, and may also
potentially facilitate their routing. Also, due to the smaller area occupied by the bus, ca-
pacitance and thus bus energy may reduce. Further, by using area no more than a bus of

original width, a narrow bus can: (1) use greater spacing between bus lines, which will

103

reduce inter-wire capacitance and hence delay, bus energy, and cross talk; and/or (2) use
wider wires to reduce resistance and hence delay and potentially improve performance. Us-
ing an address compression scheme may itself entail some performance, area, and power
consumption overheads due to extra logic. But these overheads will not be much compared
to the savings potentially obtained by compressing long on-chip buses and off-chip buses.
This is because the size, speed, and power consumption of logic (which will be used to do
compression/decompression) scale better than those of interconnect (which will be used to
communicate the information), and hence these overheads will continue to decrease over

time.

4.1.1 Related work and our contributions

Address buses have been studied widely in previous work and schemes have been pro-
posed to improve their performance, power consumption, and/or area/cost. Various bus en-
coding schemes have been proposed to reduce power consumption in address buses many of
which are surveyed in [8]. Compression, which is related to encoding, can also provide sim-
ilar or greater energy benefits in addition to performance improvements and cost reduction
for almost all components in a processor-memory system as we found in our earlier work
[50]. We also proposed a simple scheme to reduce cost and improve the utilization of address
buses in [49].

A specific scheme for address compression using a sioalpression cach@Eache spe-
cially used for compression) at the sending end and base register files at the receiving end

of a bus was first proposed in [52, 20], and subsequently used for compressing instruction

104

and data buses in [11]. However, none of the above works consider address compression as
a means of improving energy efficiency while reducing costs at the same time. Also, they do
not study on-chip buses. Only recently, the effectiveness of these schemes in reducing the
switching activity in data buses was studied in [3]. However, results reported in the above
work too do not reflect actual energy reductions for current technologies since: (i) only
switching activities were considered and (ii) it does not provide an estimate of the effective-
ness of address compression in redugeli-energybus energy dissipated due to transitions

in the line self-capacitance) ardupling energybus energy dissipated due to transitions on

the coupling capacitance between two adjacent lines) separately. This is important because,
in current and future technologies, coupling energy dominates self-energy by almost an order
of magnitude. Recently, address compression was also used to compress addresses and data
transmitted between processors in a multiprocessor server to improve bandwidth and reduce
costs due to pins [30].

In our study, using a simulator that models a realistic processor, we present results on
how address compression schemes perform when applied in on-chip or off-chip buses in
modern superscalar processors. In particular, we explore the performance, energy, and cost
benefits of address compression, the effect of techniques like bus pipelining, and the effect of
technology scaling on energy-efficiency of compressed address buses. We use two metrics
in our study —extra cycle penaltygndenergy ratio— that help us quantify: (1) the actual
performance penalty due to address compression (including the effect of hardware latency

and pipeline stalls) on the system and (2) energy dissipation in buses including the effect of

105

inter-wire capacitances for various metal routing layers in nanometer-scale technology nodes
for on-chip buses. We consider buses carrying physical addresses—instruction and data
addresses are carried on the same bus—between level-one (L1) and level-two (L2) caches
in a system and report results for two cases: (i) when the address bus connects L1 and L2
caches that are both on-chip like in most modern processors; and (ii) when the address bus
connects L1 cache to off-chip memory (L2 cache or DRAM) like in the case of many SoCs.
Overall, our work is the first to study address compression in detail, from the perspective of
optimizing performance, energy, and cost, for these types of buses.

The organization of the rest of this chapter is as follows. In Sec. 4.2, we discuss two
dynamic address compression schemes and discuss ways to optimize system performance
and area/costs when using these schemes practically. Next, in Sec. 4.3, we describe our
simulation environment and methodology. Then, in Sec. 4.4, we describe our experiments

and discuss results. Finally, we conclude in Sec. 4.5.

4.2 Dynamic Address Compression

Our study focuses on two schemes: dynamic base register caching (DBRC) and bus ex-
pander (BE) that have been proposed previously for processor-memory address compression.

These are described briefly below.

4.2.1 Dynamic base register caching
Since higher order portion of the address has more redundancy than lower order portion,

in dynamic base register caching, the original address is split into a higher order and a lower

106

order component and the former is stored in a compressor, a cache of base registers, at the
processor side in Fig. 4.1. Upon a cache hit, the index and entry number to the base-register
cache (BRC) is transmitted on the bus with the uncompressed lower order part of the original
address in a single cycle. Due to address locality, a hit will occur most of the time and since
the number of bits in the entry number is shorter than in the higher order portion, a narrower
bus can be used to transmit the address. As shown in Fig. 4.2, a miss in the processor BRC
(sending end) is indicated by sending a reserved bit pattern on the bus in the first cycle
followed by the missed address in subsequent cycles. The memory (receiving) side consists
of a register file that is loaded with this missed address. The BRC on the processor is also
updated simultaneously. Based on their simulations, the authors conclude that using a 16-bit
bus for transmission of 32-bit addresses with the DBRC scheme will result in a miss rate of
only 2% and most of the time the memory address could be transmitted using the 16-bit bus
in a single cycle. For this bus width, a fully associative BRC of at least 15 entries or a direct

mapped BRC of at least 63 entries was suggested as the optimal configuration.

4.2.2 Bus expander

In this scheme, the sending end has a look-up table (LUT) that caches the higher order
portion of the address at the processor side [11]. Upon a hit in the sender-LUT, control
signals, index, and the uncompressed portion are transmitted on the address bus in a single
cycle. Similar to DBRC, a narrow bus is used in this scheme also and in case of a miss, the
entire address is transmitted in multiple cycles. But, as we can see in Fig. 4.2, a miss is not

explicitly indicated with a reserved bit pattern as is done in the DBRC scheme. Rather, the

107

BE logic at the sending end begins to transmit the entire address immediately starting from
the first cycle. A separate control signal line is used to indicate hit or miss in the sender-LUT.
Using this control signal, the BE at the receiving side, which is a set of base registers similar
to the one used in DBRC, can determine whether the information on the bus corresponds to
a compressed address or a missed address. In the latter case, the logic updates the receiver-
LUT with the missed address after it has been received. Therefore, for the same compressed
bus, the miss penalty for BE is less than for DBRC. However, if both the number of bus lines
and the number of entries are same for DBRC and BE, the compressed portion in BE is one
bit more than in DBRC due to the control signal line, which might increase the miss rate in
BE. To further reduce the number of cycles taken to service a miss, the authors propose that
a smaller LUT with 4 entries can be used for the 4 higher order bits of the address. This
increases the number of control lines required to two. In [11], the authors show that using a
16-bit narrow bus for 32-bit addresses, only a single cycle is needed to transmit the address

90% of the time.

4.2.3 Overheads of address compression

Using address compression schemes in microprocessor buses entail performance, area,
and power consumption overheads that have not been considered in previous work. The
performance overheads are due to missed addresses that require more than one cycle to be
transmitted. These overheads occur due to two reasons. First, since addresses occur non-
uniformly over time, buffering of missed addresses will be required at the sending end and

even then these buffers may fill up due to a burst of misses, necessitating pipeline stalls.

108

Higher Order Address Bits Lower Order Address Bits

!

Comprr U ncompressed
_________ l_______________§en_dir_19_En9
A 4 |
Compressed | Lower Order Address Bits ComgLS
""""" l"""""""'ReEeR/irTgEna
Decompressor l
Higher Order Address Bits Lower Order Address Bits

Figure 4.1: Dynamic Address Compression SchemesGeneral schematic of a dynamic
address compression scheme.

Second, since missed addresses arrive at the receiving end later, cache/memory access is
delayed and this delayed fetch may cause a dependent instruction to stall the pipeline. How-
ever, modern processors using dynamic scheduling can minimize the occurrence of such
stalls by executing instructions out of order. Performance overheads can be mitigated in two
ways. First, more buffering can be done at the sending end to avoid buffer-full related stalls.
Second, missed addresses can be transmittedhin groups from the high- to low-order

end so that address tag and index fields are received quickly to start up cache/memory at the
receiving end early even before the entire missed address is received. We describe next how
address buses can be optimized for performance and cost by choosing cache sizes and bus

widths appropriately.

109

Sending End

Uncompressed Bus

Address Word

EH: Higher order part for compression
DBRC 'U: Lower order part uncompressed BE
iE: Compression cache hit entry number
'R: reserved pattern to indicate miss
:C: 1-bit control to indicate hit/miss

Hit Miss Hit

(EJu] [R] #® Ju] [cfeju]ffe H [uU]

Figure 4.2: Dynamic Address Compression SchemesSchematic depicting how DBRC
and BE form a compressed address word differently before sending it on the compressed
bus.

4.2.4 Optimal index sizes

As described earlier, a narrow bus is used to transmit compressed addresses in DBRC and
BE. The compressed bus widihis determined using the relationv = u+log,(e) (plus
1 control bit for BE), whereu is the portion of the address (lower order part) that is left
uncompressed areis the number of entries in the compression cache. Note tiisfthe
original address width (also the original bus width) and compression cache is direct mapped,
thent =W — (log,(e) + u) is the width of the tag that is stored in the compression cache.
Decreasing the address bus width),(while maintaining the width of the uncompressed
portion (u) the same, will reduce the number of entriesifi the compression cache. This

may lead to higher miss penalties (the number of extra cycles needed to transmit an address

110

Original Address | T, Tu T, | I | U |

Last cycle % T, Ty Last cycle % T, Tu |
2nd cycle | T, T. I 2nd cycle | Ty T, |
1st cycle | R | U | 1st cycle TL| | | u |
Miss Pattern Miss Pattern
w1 | u Cwl r [u_ |
Hit Pattern Hit Pattern

DBRC Transmission Format BE Transmission Format

Figure 4.3:Dynamic Address Compression Scheme®ur default transmission format for
DBRC and BE.

if it misses in the compression cache) and therefore degrade system performance due to the
following reasons: (1) fewer entries in the compression cache cause more misses and (2)
wider tag {) to find a match for reduces the chances of a hit. Thus, there exists a range
of values forw and e for which the system performance will be affected the least when
address compression is used. We are interested in finding these ranges of values. Note
that the combination olv ande is proportional to the cost of using address compressien—
represents the extra compression cache hardware add®d-andrepresents the number of

bus lines that can be removed.

4.2.5 Compressed address transmission format
In this section, we describe an energy-efficient transmission format for compressed ad-

dresses. Previous work has not clearly specified any format for transmission of compressed

111

addresses. An efficient transmission format is important because the number of self and cou-
pling transitions and hence bus energy consumption/dissipation depend on relative position-
ing of different bits in the compressed address. In this work, we suggest a basic transmission
format for DBRC and BE.

Our proposed baseline transmission format for DBRC and BE is shown in Fig. 4.3. In the
case of a hit, when the compressed address is transmitted, the entry (E) field consists of an
index (1) field, which points to line number which hit in the sender cache, andwa(W)
field which points to the set number for the tag match in the line. The rest of the bus lines are
filled with the control bit (C) field which occupies the most significant bit (MSB)—only in
the case of the BE scheme— and the uncompressed (U) field which occupies the remaining
bits in the lower order portion of the bus. It can be noted that the absence of control bit in
the compressed address for DBRC means that the | or U fields can be one bit wider.

In the case of a miss, during the first cycle of transmission, the entire E-field is replaced by
a reserved bit-pattern (R) in the DBRC scheme whereas in BE it is replaced with a portion
from the higher order part of the address. Other fields in the first cycle—U-field in the case
of DBRC and C- and U-fields in BE are derived in a manner as in the case of a hit. In
subsequent cycles, other portions of the higher order part of the address (tag or H-field) are
transmitted on the bus but this time they can fill up the bit lines corresponding to the U and
C fields too. Note that the U- and C-fields must be transmitted in the first cycle of a miss so
that the decompresser can detect the miss and calculate the number of cycles in which it will

receive the complete address.

112

In the design of these formats, we followed the principles mentioned in Sec. 3.7.2 with

some changes to ensure their energy-efficiency.

e To minimize transitions on the self-capacitance of the wires, bits in the same position
should be correlated across consecutive cycles. Hence, where possible, different fields
of the compressed address like the U-field, I-field, W-field, or different parts of the
H-field (T_, Ty, andTy) should be placed at the same position on the bus irrespective
of hit or miss. This also helps limit decoding complexity. In the transmission format
shown on the left in Fig. 4.3, we have placed the U-field and the I-field in the same

position (lower order bits of the bus for hit as well as miss) for this reason.

e To minimize transitions on coupling capacitance between neighboring lines, correla-
tion between the bits is necessary, i.e.j Bihould be correlated with both bit- 1 and
i — 1. In our transmission format for a hit, the I-field and U-field are placed together
since they are both derived from the original address and hence can be expected to be
highly correlated than the case in which W-field and U-field are placed together. Fur-
ther, to minimize transitions on self-capacitance as discussed earlier, this arrangement
is followed in the first cycle of a miss also, although there is no way-field in that case.
Here, the bits corresponding to the W-field are occupied by bits from the lower order

portion of the H-field represented By in Fig. 4.3.

e Finally, during each cycle of transmission, the bits are placed on the bus starting from

the LSB so that inactive lines (lines that do not carry any new data in that cycle) are

113

placed in the higher order portion of the bus

4.3 Simulation Methodology

We usedsim-alpha the validated Alpha 21264 simulator [18] based on the SimpleScalar
tool, as the platform for our experiments. The benchmarks and simulator configuration we
used are summarized in Table 3.1. In this simulator, we implemented DBRC and BE for
address compression on the-k12 address bus. As mentioned earlier, we report results
for two cases: (i) when the bus connects L1 and L2 caches that are both on-chip like in
most modern processors and (ii) when the bus connects to off-chip memory (L2 cache or
DRAM) like in the case of many SoCs. In either case, we that the assume compression
hardware is placed after the L1-cache but before the buffer chains that drive the2 1
address bus. Thus, we assume that the L1 miss address file (MAF) stores uncompressed
addresses from L1-cache and is drained when the compression hardware is free. We also
assume that instruction and data addresses are compressed using the same hardware. Further,
in the default case, we assume that the compression and decompression of addresses take
negligible time and that buses are not pipelined. The former assumption is justified even
for the largest size of our compression cache which is of the order of a few kilobits because
L1 cache sizes in current systems—which are at least 10 times larger—have only a single
cycle latency. The extra cycle penalty and bus energy model for performance and energy
evaluation are mentioned earlier in Sec. 3.4. 50 million committed instructions are simulated

after skipping 2 billion committed instructions initially.

114

4.4 Simulations and Results

4.4.1 Performance, energy, and cost tradeoffs

In this experiment, we examine three-way tradeoffs between performance, energy, and
cost when using DBRC and BE schemes fortl12 addresses. Table 4.1 reports values for
five quantities: extra cycle penalty, cache size, on- and off-chip energy ratios, miss rates, and
compression ratios for various bus widths. These bus widths were chosen so that all trends
for variations in the above-mentioned quantities can be captured with minimum number of
bus widths.

As explained in Sec. 4.2.4, an optimal number of bits that should be allotted to the index
field that results in the minimum extra cycle penalty for a given bus width can be found.
These values, which we determined experimentally, are reported in the bottom lines of each
row in Table 4.1. For example, the extra cycle penalty of a 16-bit bus for the optimal index
width is reported asj5,0.18%, i.e., if an index width of 5 bits is used, the extra cycle
penalty will be only 0.18% compared to address transmission on an uncompressed bus. The
corresponding cache size is given on the bottom line of the next row which is 1575 bits.
Similarly, the energy ratios are 1.16 (16% energy overhead) and 0.94 (6% energy reduction)
for the off-chip and on-chip cases, respectively, when the optimal index width is used for this
bus.

We also found that, by tolerating a slightly higher extra cycle penalty, it may be possible
to reduce the compression cache size (hardware cost) substantially. Results for this config-

uration are indicated on the top lines of each row. In this study, we limited the extra cycle

115

Bus Width

8 10 12 14 16
Extra Cycle | Min. [3, 1.55%] | [2, 0.92%] | [3, 0.32%)]
Penalty Opt. | [1,5.42%] | [3, 2.95%] | [6, 1.49%] | [3, 0.64%] | [5, 0.18%]
Cache Min. [3, 435] [2, 189] [3, 375]
Size in Bits | Opt. [1,99] [3, 465] [6,3683] | [3,405] [5, 1575]
Off-Chip Min. [3,1.23] | [2,1.29] | [3,1.21]
Energy Ratio| Opt. | [1, 1.32] [3,1.20] | [6,1.27] | [3,1.23] | [5,1.16]
On-Chip | Min. [3,0.85] | [2,0.93] | [3,0.97]
Energy Ratio| Opt. [1, 0.91] [3, 0.81] [6, 0.85] [3, 0.90] [5, 0.94]
Miss Rate | Min. [3, 0.20%] | [2, 0.19%] | [3, 0.10%)]
Opt. | [1,0.42] [3,0.25] | [6,0.20] | [3,0.15] | [5,0.08]
Comp. Ratio| Min. [3, 0.48] [2,0.50] [3, 0.49]
Opt. | [1,0.56] [3,0.48] | [6,0.49] | [3,0.48] [5,0.48]
Bus Width
20 24 28 32 36
Extra Cycle | Min. | [1, 0.06%] | [1, 0.00%]| [1,0.00%] | [1,0.00%]
Penalty Opt. | [8, 0.01%] | [5, 0.00%] | [9, 0.00%] | [3, 0.00%] | [1, 0.00%]
Cache Min. [1, 63] [1, 51] [1, 39] [1, 27]
Size in Bits | Opt. | [8,10731] | [5,1071] | [9,13299] | [3,135] [3, 15]
Off-Chip Min. [1, 1.08] [1,1.00] | [1,1.00] | [1,1.00]
Energy Ratio| Opt. [8,0.99] [5,1.01] | [9,1.00] | [3,1.00] | [1,1.00]
On-Chip | Min. [1, 1.01] [1,1.00] | [1,1.00] | [1,1.00]
Energy Ratio| Opt. | [8, 0.99] [5,1.01] [9,1.00] | [3,1.00] | [9,1.00]
Miss Rate | Min. | [1, 0.042%]| [1,0.00] | [1,0.00] | [1,0.00]
Opt. | [8,0.00] [5,0.00] [9,0.00] | [3,0.00] | [1,0.00]
Comp. Ratio| Min. [1, 0.55] [1, 0.63] [1, 0.74] [1, 0.84]
Opt. | [8,0.53] [5,0.63] [9,0.74] | [3,0.84] | [1,0.94]

116

Table 4.1: Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios, Miss
Rates, and Compression Ratios for Address Compression Using DBRC Schenk@r a given bus
width (column) and metric (rows), [Al, A2] means that Al is the index width (minimum or optimal)
and A2 is the value for the metric for that index width. For column corresponding to bus width=8,
10, and 36, the minimum and optimal values are the same. Hence only one is reported.
penalty to 0.3% higher values than those for the optimal index and experimentally deter-
mined the compression cache size, energy ratios, and miss rates. For the 16-bit example

explained above, we found that the minimum index that can be used is only 3-bits. Thus

the cache size can be reduced from 1575 bits (as in the optimal case) to only 375 bits—a

Bus Width

8 10 12 14 16
Extra Cycle | Min. | [1, 4.98%]| [2,2.34%] | [3, 1.62%] | [2, 0.83%] | [2, 0.46%]
Penalty Opt. | [2,4.91%]| [3,2.34%] | [4,1.61%)]| [5, 0.63%)] | [6, 0.27%]
Cache | Min. | [1,136] [2, 256] [3,480] | [2,224] [2,208]
Size in Bits | Opt. | [2,272] [3,512] [4,960] | [5,1792] | [6, 3328]
Off-Chip Min. | [1,1.19] [2, 1.07] [3, 1.06] [2,1.11] [2,1.11]
Energy Ratio| Opt. | [2,1.18] | [3,1.08] | [4,1.06] | [5,1.06] | [6,1.07]
On-Chip | Min. | [1, 0.88] [2,0.82] [3,0.84] [2,0.88] [2, 0.94]
Energy Ratio| Opt. | [2, 0.87] [3,0.82] [4, 0.84] [5, 0.87] [6, 0.92]
Miss Rate | Min. | [1, 0.40] [2,0.28] [3,0.21] [2,0.18] [2,0.12]
Opt. | [2,0.39] [3,0.28] [4,0.21] | [5,0.15] [6,0.10]
Comp. Ratio| Min. | [1, 0.54] [2,0.48] [3,0.47] | [2,0.48] | [2,0.50]
Opt. | [2,0.53] [3,0.48] [4,0.47] | [5,0.47] | [6,0.48]
Bus Width
20 24 28 32 36
Extra Cycle | Min. | [1, 0.07%]| [1,0.00%] | [1,0.00%)] | [1, 0.00%]
Penalty Opt. | [6, 0.01%] | [10, 0.00%]| [8, 0.00%] | [4, 0.00%] | [1, 0.00%]
Cache Min. [1, 88] [1,72] [1, 56] [1, 40]
Size in Bits | Opt. | [6,2816] | [10, 36864]| [8, 7168] | [4, 320] [1, 24]
Off-Chip Min. | [1,1.10] [1, 1.00] [1,1.00] | [1,1.00]
Energy Ratio| Opt. | [6,1.00] | [10,1.00] | [8,1.00] | [4,1.00] | [1,1.00]
On-Chip | Min. | [1, 1.01] [1, 1.00] [1,1.00] | [1,1.00]
Energy Ratio| Opt. | [6,1.00] | [10,1.00] | [8,1.00] | [1,1.00] | [1,1.00]
Miss Rate | Min. | [1, 0.06] [1, 0.00] [1,0.00] | [1,0.00]
Opt. | [6,0.00] | [10,0.00] | [8,0.00] | [4,0.00] | [1,0.00]
Comp. Ratio| Min. | [1, 0.56] [1, 1.63] [1, 0.74] [1, 0.84]
Opt. | [6,0.53] | [10,0.63] | [8,0.74] | [4,0.84] | [1,0.94]

117

Table 4.2: Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios, Miss

Rates, and Compression Ratios for Address Compression Using BE Schei®a. a given bus

width (column) and metric (rows), [Al, A2] means that Al is the index width (minimum or optimal)
and A2 is the value for the metric for that index width. For column corresponding to bus width=36,
the minimum and optimal values are the same. Hence only one is reported.

76.2% reduction. However, this may result in slightly worse energy ratios as observed from
Table 4.1. For address compression using the BE scheme (Table 4.2), the corresponding

cache size reduction for a 16-bit bus is from 3328 bits when using the optimal index size (6

bits) to 208 bits when using the minimum index of 2 bits—a 93.75% reduction. Other values

of extra cycle penalty can also be used to derive corresponding minimal index widths and
similar trends as reported below will be observed.

Comparing across the two schemes for same bus widths, the following observations can be
made. First, both schemes result in negligible performance penalty when address bus widths
are reduced up to 20 bits from the original 38 bits. This results in immediate savings of 18
out of 38 (47.4%) bus lines and their associated buffers, repeaters, and receiving circuitry.
For these savings, the compression cache size needed is also small (maximum of 63 bits).
Thus, there will be net savings in area/cost even if the size of address compression hardware
is taken into account. Reduction of bus width (beyond 20 bits) increases the extra cycle
penalty for both DBRC and BE. Also, the energy ratios show a broadly decreasing trend
as we move towards narrower bus widths. For these buses, BE results in greater energy
reduction than DBRC for most of the bus widths we considered. Finally, compression cache
miss rates for both schemes are roughly similar for all bus widths—they vary between 0%

(very few misses) for larger bus widths to about 39% for narrow bus widths.

4.4.2 System performance and bus energy for fixed hardware costs

In the previous experiment, we set limits on how much extra cycle penalty can increase to
determine the minimum index widths or cache sizes that can be used for various bus widths.
In this experiment, we assume that the designer is allowed to use a compression cache in
a given range of sizes thus fixing the hardware cost for address compression in this range.
For seven different bus widths which represent different area/cost reductions of the address

bus, we estimate the extra cycle penalty and energy ratios that result. For each bus width, we

118

consider compression cache sizes ranging from 4 to 2048 entries.

Performance penalty and miss rates

In Fig. 4.4, for narrower buses (e.g., a 12 bit bus), we observe that the extra cycle penalty
first decreases as the number of entries is increased from 4 to 64 and then increases dramat-
ically as we increase the number of entries to 2048. The reason for this is the following. A
larger number of entries means more bits of the compressed bus need to be used for trans-
mitting the index during a hit. Thus, a lesser number of bits of the bus can be used for the
uncompressed low-order portion of the address word. Reducing the uncompressed portion,
in turn, means increasing the compressed portion, which lowers the compression cache hit
rate to some extent and this is the reason for this degradation in performance. For slightly
wider buses (e.g., 14 and 16-bit buses), the number of entries in the compression cache be-
comes less critical to the performance than the narrow bus does as our results show. This
is because, for the same compressed portion of an address word, the increased bus width
allows more entries in the compression cache, which can reduce the miss rate. Also, even
in the case of miss, the wider bus facilitates transfer of the missed address in fewer cycles
and hence the miss penalty becomes smaller. For even wider buses (24-bits or more), the
uncompressed part is relatively large across different compression cache sizes, so varying
the compression cache size does not have any impact on the performance.

Another observation from Fig. 4.4 is that DBRC performs better than BE when smaller
number of entries (notably four and eight entries) are used and this trend is true for all bus

widths. The reason for this is the following. As mentioned in Sec. 4.2, the miss penalty for

119

8¢

'$9ZIS ayoe)

uoissaidwo) ualayld Jo) 39 pue DYGQ Jo} Aljeuad 894D eix3: 7 ainbi

80T
201

S
¢ 1
9

1 (4

34114

(SHg) WPIM sng Bmmoaaoo

201

0T

(ool

yoed uorssdadwod
ul SALIUd mc JIqunN

91

oA wﬁm oA m& e e

| 8P0C
| vc0l
| 1S
ST
8C1
9
1

e

N
DI N ==t
oo

b
ﬁ ol

(¢ o}

FF

Hd B
ddda

A

- 000°0

'EJ%%

- 000°T
- 000°C
- 000°¢
- 000°Y
- 000°S
- 000°9
- 000°L
- 0008
- 000°6
- 000°01
- 000°TT
- 000°CI
- 000°¢€T
- 0001

LT ‘% %0001

[0T ‘% 100°0]

[9 ‘% L00°0]

19 ‘%Lz 0]

[S “%1€9°0]

¥ ‘% <s19°1]

[T ‘% L06'¥]

qHd

[T ‘%0001

[T ‘% 10001

[8 “%600°0]

[S “%8LT'0]

[€ “%€p9°0]

[S ‘% S6T1]

[1°%02p's |

d4dd

8T

114

0T

91

4

(4!

8

[xopur 1dO
‘Kyquead IPAD vnxy “urA]

SIZIS YO uoIssdadwo)) pue SYIPIAA Sng
PIssaIdwio)) JUIIJJI(] SSOIIY UONBLIB A AJ[RUDJ I[O4A)) BIIXH

(9,) Keud g IPA) vIIxXy

120

BE will be less than or equal to that for DBRC for the same bus width since the former uses
a single bit and the latter uses a longer reserved bit-pattern to indicate a miss. However, for a
given bus width and also fixed number of entries in the compression cache, the compressed
portion for BE is one bit wider than that for DBRC due to the control bit, so the extra cycle
penalty in the case of BE can become higher due to increased miss rate leading to worse

performance than DBRC.

Bus energy dissipation

Off-chip bus energy ratios are reported in Fig. 4.6. From this plot, we observe that BE
consumes less energy on the average than DBRC for most bus widths—average results are
shown in the table on the top-left corner of each plot. BE is more energy-efficient because it
has lesser miss penalty than DBRC for the same bus width. But, for a bus width of 24 bits
or greater, not much off-chip energy savings can be obtained with both address compression
designs. This is because, for wider buses, the uncompressed part has more bits and the
compressed part has a lesser number which leads to low miss rate (smalleOh#b Ofor
both schemes. So most bus lines are used for the uncompressed portion and hence the bit
pattern of the compressed address word is similar to the bit pattern of uncompressed original
address word.

Figs. 4.7 and 4.8 show on-chip energy ratio, including the contribution of self-capacitance
energy and components of coupling energy across different number of entries in compression
cache, for four bus widths. These are shown across two plots: bus widths 12 and 14 in

Fig. 4.7 and 16 and 24 in Fig. 4.8. From these figure, it can be observed that energy savings

121

BE Miss Rate

's9zIS ayoe) uoissaidwo) ualayid Jol 3g pue DYgq 10} arey SSIN:G v 2inbi

3Yoed uoIssaAduwod
Ul SILIIUD JO JIqUINN

(S11q) YIPIAA sng passaaduio)

87 4 (114 91 4! 4! 8
[DIt [oy e
|| 55 mﬁ | | 58 =S | L»zmﬁ . |
Q@@.@ At R A A e =TT T IliEEEEE M "1 Il QQ@.Q
002°0 — z - 0020
00°0 - - 00+°0
009°0 — - 0090
008°0 + -+ 008°0
000°T + -+ 000°1
[1‘000°0] [1°‘0000] [6°‘100°0] [9°960°0] I[S‘0ST°0] [¥‘01Z°0] [T ‘68€°0] A4
[1 ‘000°0] [T ‘00001 [6°000°0] I[8°cLo’0] [9°czr0l [¥ I8T°01 [€ ‘9€€°0] uga
00C'T - 8T ¥ [1Y4 91 4l 41 8 [xapuy 1dQ | - 00T°T
ey SsSIA "ulAl]

Hd Pue DA dd 10] SYIPIM sng
Passaaduio)) JUIIJJI(J SSOIDY UOIJBLIB A I)BY SSIIA

122

ey SSIA DI dd

"SYIpIM snqg passaidwod

1uaJayIp 1oy 39 pue DY4dQ Jo} oirel uonedissip ABiaus snq diyo-yo :uonedissiq

ABiau3 sng diyd-yoO uo azis ayoe) uoissaidwo) Jo aduanjju| 9’y ainbi4
Amﬂmmv YIPIA SN PISSd hQEQo ayoed uoissaaduwod

U SILIUI JO JAqUINN

87 vz 0z 91 4 41 8
R o B S s B P e P e P B
- 000°0
)
=
- 000 O
=.
=
Y
S
2
- 0007 5
=
S
- 00S°C
T0T 666101 T[0T ‘00011 [01 S86'01 1Z'S90°TT 909011 € 65011 [Z SLI'T] ad - 000°¢
[9°000'T] [1°666'0] [6°066°0]1 I[8 ‘€ST'T] [S‘061°'T] [¥‘S8T'TI [T €TT’T] odda Hd B
8 re 0 & " o 8 ‘oney AUy n:—%ﬂ%h~:~.um Qmmﬁ— _H_

SIZIS YO uoIssdadwo)) pue SYIPIAA
sng PassaIduwio)) JUIIJJI(J SSOIY UONBLIBA oney Astuy diy)-110O

123

obtained with address compression in on-chip buses is more savings for off-chip buses. It can
also be seen that, across bus widths, most of the energy saving is due to reduction in toggle
energy and across different compression cache sizes in the same bus width, the savings—
which are better when smaller cache sizes are used—are due to reductions in coupling charge
and discharge energies. Also, similar to what was observed in Sec. 4.4.2 for performance,
BE resulted in a worse energy ratio compared to DBRC when smaller compression caches
(number of entries of 4 and 8) are used. The reason for this is also the same as that described
in Sec. 4.4.2. Finally, we also observe that, similar to trends in off-chip energy dissipation,
the wider the compressed bus width is, the less energy can be saved with dynamic address

compression.

4.4.3 Influence of technology parameters on energy efficiency

To study the energy-efficiency of address compression as technology scales down, we plot-
ted energy ratios as a function ®fthe ratio of coupling capacitance to the self-capacitance
of a wire. The parametex takes values of approximately the following for topmost layer
interconnects in current and future nanometer technologies according to [28]: 2.08 for 130-
nm, 2.34 for 90-nm, 2.73 for 65-nm, and 3.05 for 45-nm. For future nanometer technologies,
the values ofA are bound to increase further. From the plot shown in Fig. 4.9, we observe
that address compression improves energy efficiency of compressed address buses even as
technology scales down. For current technology (130-nm), the reduction is about 10% on

the average for most buses.

124

80T\ PCOL| IS | 9ST | 8CL | #9 | T€ | 91 | 8

(sng mourepN) ‘sazis ayoed uoissaldwod
1uaJayIp 4o} 3g pue DYGq Joj ones uondwnsuod Abiaua snq diyo-uQ :uonedis
-s1q AB1au3 sng diyD-uQ uo azis ayoe) uoissaidwo) Jo asuanjul: /' ainbi4

(s11g) WPIM sng passaaduo)

4! (4} 8
€ | 91| 8 L4

3yded uorssaaduwiod
Ul SILIJUD JO JIQUINN

N

v (8Y0C|PCOT| TIS |9ST |8CI | 9 | ¢€ | 91 | 8 v |8CL| ¥9

¥4dd
CL!

0

 — e m O Y £ (U
| — s m S b B ((
| — s G b
| — e m AR Y £ (U
| — e G
| — - m A Y £ (U
| — e G
| — e m G |
| — e m O Y £ (U
 — e w1 |
| — e m O N £ (|
| — e m G 4 |
| — e m AR Y £ (A
| — e m G £
 — s m G b £ ((
| — s mG (|
| — e m AR Y kY (U
| — e m G b £ (A
| — e G £
| — e m S bl £ ((
| — s mm RS Y £ (U
 — s G |
| — e m R Y £ (U
| — e G £
| — e m e) b4
 — s G b
 — e m S b ¢ ((
 — e G 14 |
 — e m O B £ (4

T
o

| — e e G
| e— e e ERC (4
| — e RO) £ ((

| — e R M R (A

T EEEeee——— "]
| — e e RO M R (A
| E— e e G e

£3a3uy] dueypede)-JPS O
£313uy d8aey)) pue Igaeydsi(] :dduejede)-guridno) @

£3a9uy] 91330 :90ueynede)-3urjdno)]

[s ‘s98°0] [€ ‘9€8°0] [T ‘s98°0]

qd

[s ‘8,801 [¥°sz80l [€ ‘p18°0]

8 2:k: (¢

14! (4! 8

[xapug 3dO
‘oney AS1ouy diy)-uQ "ur]

Ad pue DA 10§ (MoL1eN) SUIPIM Sng
PIssdIdwio)) JUIIIJJI(J SSOY uoneLie A oney Asruy dig)Hy-uQ

‘ I;?ﬂ [EUIBIJO
~ ® g < o
L < —J

oney Asnuy dig)-uQ

\
<
-

[
b
—

125

(sng apin) "sazis ayoed uoissaldwod
1uaJayIp 40} 39 pue DHYgQq Jo) ones uonedissip ABiaua snq diya-uQ :uonedissig
ABlau3 sng diyD-uQ uo azis ayoeH uoissaldwo) Jo aduanjul 8y ainbi4

ayoed uoissaadurod

I ! n
(s1g) WPIM sng passarduro) S S —
8T 0T 91
8YOTYCOL| TIS | 9ST |8CT | #9 | C€ | 91 | 8 | v |8VOT|PTOL| TIS (9ST 8T | ¥9 | T€ | 91 | 8 | ¥ [8POTPCOL| CIS |9ST |8CL | v9 | C€ |91 | 8 | ¥ L
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGUO,.
o O === == == = = == == = = = == =< = <= === = === == == = =< == == =<1 : =2
BB R R R R R E R R R R R R E R R R EE R R R R R R R E R R R R E R R EE R R R =R R E R =R
= O O FE O E QO E O E O E RO E O EOQE O E O E O E O FE O E O ECQE O E O E Q& O E O F O &F Q= O F Q= Q& O F O 2
0
- T0
c
B
-roc
=
i @
=
o &
-90x=
o
J
]
<
- 80x
Y]
=
Uy e
|||||||||||||||||||| |||||||||||||||||||| - u RIS |
[€ ‘666°0] [0T ‘686°0] [S “CT6°0] Hd
£313uy dueyede)-JPS O [1°000°T] [8°,860] [8 ‘1€6°0] d4d -l
£3a9uj] ddaey) pue 3aeydsi(:dduejede)-3uridno)) g 8¢C 0¢ 91 [xapuy 1dQ
£3a3uy 913301 :90ueyede)-gurdno)) ‘oney LA31uy diy)y-uQ ur]

dd pue DA Id 10J (SPIA PuUL WNIPIJA) SYIPIM sng
PIssdIduro)) JUIIIJJI(] SSOIIY UoneLIB A oney A3uy dig)-uQ

126

On-Chip Energy Ratio Variation Across Different
Techpologies for DBRC alnd BE

1.02 1 ! ! :
1
BE 24-bit
N $ 2 ¢
1 .
il 1 1 DBRC 24-bit
0.98 -] ! i =il
! : : 1 DBRC 16-bit
o 0.96 1 | 1 : :
s % —— ——iee —— BE 16-bit
£ 094 4 ! —)
B } , ! ! DBRC 14-bit
] =
g 092 l | | | DBRC 8-bit
=09 : : I
& T : ; I BE 14-bit
O 0.88 - h ¢ ¢ i 1
= 088 ! . ¢ — BE 8-bit
o | ' .
0.86 - ! ! : \DBRC 12-bit
! T i —} BE 12-hit
0.84 - h 1 \
| —= *=§.' BE 10-bit
0.82 - ! ! : | DBRC 10-bit
0-8 : T : T T : T T : 1
130nm 90nm 65nm 45nm
2 () 2.2 (5.4 2.6 () 2.8 3 ¢) 3.2
Technology 2 (Ratio of Coupling-Capacitance to Self-Capacitance)

Figure 4.9:Energy Reduction in Compressed Address Buses for Different Technologies.
This plot shows the effect of technology on compressed address buses of various widths.

4.4.4 Influence of extra compression/decompression latency

In this experiment, we examine how compression/decompression latency affects system
performance. Previously, we assumed that there is no extra compression or decompression
latency at the sending and receiving ends respectively. We observed that the extra cycle
penalty was large (about 5%) for small bus widths (8-bit and 12-bit bus) and dropped off
rapidly for bus widths beyond 16 bits. This trend can be observed in Fig. 4.10 too for com-
pression/decompression latency of zero cycles. Realistically, compression may take a longer
time—if complex schemes are used for compression cache lookup and/or multiplexers are
used to rearrange bits to ensure energy-efficient transmission—than decompression which

involves only register access but only if a hit occurs at the sender compression cache. Hence

127

we consider two cases in this experiment: (1) compression takes one extra clock cycle and
decompression takes zero cycles, and (2) compression takes one cycle and decompression
takes one cycle only if a hit occurs in the sender compression cache. In the second case, a
miss is assumed to cause no extra decompression latency because there is no need for a regis-
ter file access to decompress the address. Rather, the multiple cycles needed for transmission
of the missed address already takes into account the latency for a miss.

From results shown in Fig. 4.10, we observe that the extra cycle penalty does not drop off
rapidly with bus width as in the default case (both compression and decompression occur
in zero cycles). This is because the hit-rate of the compression cache with wider buses
becomes better which necessitates one extra cycle for decompression each time a hit occurs.
We also observe that pipelining the address bus helps reduce the extra cycle penalty to some
extent but the effect is not much since-£1.2 address references are spaced more or less
randomly apart in time; bus pipelining yields best results when references on the bus occur
continuously spaced apart by a fixed time gap.

From all the above results we observe that both DBRC and BE have similar trends and in
most cases, the results for BE are slightly better. Hence in the rest of the chapter, we report

results only for BE.

4.4.5 Influence of virtual—physical address translation
In a realistic system, a page can be placed anywhere in the available memory by the
operating system (OS) and hence the higher order part (page number) ofthelphysical

address—which is obtained using the hardware translation look-aside buffers (TLB)—can

128

‘Buiuljadid sng Ssaippy INOYIIM pue Ylim 2oueLlIo)
-lad uo Aouaje uoissaidwodag/uoissaldwod Jo asuanul:QT 7 ainbi4

(1) WPIA sng passarduo)

Gt | d4dd
1nq-71 1q-8 Nnq-zr 1q-8
=) = xE | FE = . . 2R 2R
g g 3 TRZERZEE g 222 RZERZ
g 5 5 5 5 57 5 EFR 5 5 ST 5 EREER
(e 4] (e (7] (7] [0 e (7] (7] (e (e (7] [0 4] (7]
=TI =% =% [="I=" [="I=" =4 =% =% [="I=" [="I="
- | = - - 000°0
7 7 7) i - 000°T
: s 000°¢ vﬂ
O v S e N v ey i =
=] .
- .mgL N NN - 000€ O
N N) = (<]
.,h «w]
g @
000
[¢°]
s
- 000 £
<
IPAI T :LoudeT ‘duoddq 0
- 0009 8
IPAI T :LoudeT *duo)] o S
3L () :LoueT *duwoddq e o o 000°L
34D T :£dudyer] *dwo) g 4 gk
I () :LdoueT *duwoddq Ms 0008
IPAI () :LoudeT ‘duo) O

sururpPdig JNOYJIAA PUB YIIAA SIDUIRT UOISSAIdwodd(q
pue uoIssdaduwo)) JUIIJJI(SSOIIY UONBLIB A AJ[BUDJ J[IA)) eXIXH

129

vary quite significantly. But this variation is not captured realistically in the direct page table
translation mechanism that is used in sim-alpha. It uses the value from a sequential counter—
which is incremented whenever a new page is loaded—as the physical page number and
places the mapping information (physical and virtual page numbers) in the page table at the
location pointed to by the virtual page number. Due to this, higher order parts of physical
addresses issued in sim-alpha are likely to have more sequentiality characteristics than in a
realistic system where contiguous entries of the page table are not likely to belong to the

same program.

Extra Cycle Penalty and Compression Ratio Variation Across
Different Compressed Bus width for Hash Memory Mapping

30

Extra Cycle Penalty [Avg. Max. Min. B Without-HMP
Without HMP | 3.295% 27.936% 0.004% @ With-HMP
With HMP 3.965% 28.059% 0.816%

25
20 -
15 4
10 4
5 -

0. JLHMJM#
4 6 8 10 12 14 16 18 19 20 22 24 28 32 36

Compressed Bus Width (Bits)

Extra Cycle Penalty (%) Without MP

Figure 4.11: Influence of Different Virtual —Physical Address Mapping Schemes on
Performance.

We study the effect of a more realistic scenario by implementing a hashing mechanism to

randomize the physical page number of a newly loaded page. Note that, in an actual system,

130

available memory constraints dictate the physical page number and no hash mappings are
used. Given the number of bits used for the physical page nurii® the virtual page
number ¥ N), and® = @; the physical page numbdpP) using our mapping scheme is

found by using:
PN=2"Bx (VNx®— |[VNx ®]).

Both instruction and data addresses are mapped using this scheme. Note that we have
not changed the way TLBs operate but some extra TLB misses may be caused due to the
new mapping mechanism. Our simulations in which we measure the extra cycle penalty also
include this overhead, if any. Results for simulations using the default mapping scheme and
our hash mapping scheme are shown in Figs. 4.11, 4.12, and 4.13.

As we observe in Fig. 4.11, the extra cycle penalty increases when new mapping is applied
since the number of different patterns in the higher order portion of the addresses increases
and consequently the miss rate of the compression cache is higher than before. However, this
increase is small, only 0.7% on average but the energy savings are much more, especially
for off-chip buses. From Figs. 4.12 and 4.13 we observe that, on the average, the off-chip
and on-chip energy savings are improved by 0.271 and 0.009, respectively. These results
show that address compression will be more effective in real systems even if different virtual

memory organizations and/or mapping schemes are used.

131

On-Chip Energy Ratio Variation Across Different Compressed
Bus width for Hash Memory Mapping

On-Chip Energy Ratio | Avg. Max. Min. [| O Coupling-Capacitance: Toggle Energy
Without HMP 0.038 0.071 0.031
1.200 - With HMP 0.029 0.060 0.020

B Coupling-Capacitance: Discharge and Charge

Eneréy
O Self-Capacitance Energy

On-Chip Energy Ratio

RO - -
[= =) o [—3
(= S S (=4 [—4
<> <> = = <>
L L L L

Orig. [
W/O-HMP =
W-HMP [@
W/O-HMP [
W-HMP [
W/O-HMP [
W-HMP [i
W/O-HMP [
W-HMP [
W/O-HMP [0
W-HMP [
W/O-HMP [
W-HMP [
W/O-HMP [
W-HMP [
W/O-HMP [
W-HMP [
W/O-HMP [0
W-HMP [
W/O-HMP [
W-HMP |1
W/O-HMP [
W-HMP [
W/O-HMP [
W-HMP [
W/O-HMP [
W-HMP [
W/O-HMP [o
W-HMP [1
W/O-HMP [
W-HMP [

[
[
[N
g
[
=]
[3%)
(53
()
=

14 20
Compressed Bus Width (Bits)

Figure 4.12: Influence of Different Virtual —Physical Address Mapping Schemes on
On-Chip Energy.

£
(=)
(=]
[
—]
-
[]
—
=)}
[
=]
-
o

4.4.6 Influence of compression cache set associativity and replacement

policy

If the number of bits in the tag field and the number of entries in the compression cache
are fixed, then the miss rate of the cache will change with change in set associativity. Thus,
higher set associativities can reduce both extra cycle penalty and improve energies primarily
due to an increase in the number of hits when shorter compressed addresses can be trans-
ferred in a single cycle. We studied the effect of different configurations: direct-mapped,
2-way, 4-way, 8-way, and fully-associative caches on extra cycle penalty and the results are
shown in Figs. 4.14, 4.15, 4.16. Here, we use a compression cache with 16 entries which

enables us to study the following range of bus widths: 8-bit, 10-bit, 12-bit, 16-bit, and 24-bit.

132

Off-Chip Energy Ratio Variation Across Different Compressed
Bus width for Hash Memory Mapping

1.800 - - - -
2 O ot e i1t 1885 1000 @ Without-HMP
wn ithout W-
1= ith-HMP
1.600 With HMP 0.848 1.322 0.593
1.400 ®
(q' o«
2 g PR B T
1.200 — N 2 = = = = 2 - - - -
4 = — Am —
S SR s = &, gz 2
_ 52 - — < — 2 -
1.000 2 e e ke TE TR MR e
= | |E [[E
=

e
=]
(=4
=]
L
0.670
0.707

0.593

0.600

Off-Chip Energy Rat

0.400

0.200 -

0.000 +
4 6 $§ 10 12 14 16 18 19 20 22 24 28 32 36
Compressed Bus width (Bits)

Figure 4.13: Influence of Different Virtual —Physical Address Mapping Schemes on
Off-Chip Energy.

From our results, we observe that, across most bus widths, extra cycle penalties and energies
reduce when set associativity increases from direct-mapped to fully-associative. Extra cycle
penalties also reduce as the buses become wider because of reducing miss rates as described
in earlier results. With fully-associative compression caches, on-chip energy ratios reduce
by as much as 8% or so compared to direct-mapped caches and extra cycle penalties reduce
by a few tenths of a percent. Thus, using fully associative compression caches, particularly
since the number of entries is small can be very effective in address compression.

We also studied how different replacement policies will influence extra cycle penalty and
energies in address compression caches. We tested the well-known first-in-first-out (FIFO)

and least-recently-used (LRU) policies and a modified LRU policy recently proposed in [30].

133

Extra Cycle Penalty Variation Across Different Set Associativity

of Compression Cache for BE
6 .

vg
54 v & - 8-bit
S
=
=
&
o 3
°
5 \
e — —— —m 10-bit
b 2 \
2 —
—h— —A 12-bit
1 -
—
o e ol — 16-bit
0 ¥ ‘ —k ‘ >< : >¢ : 24-bit
Direct-mapped 2-way 4-way 8-way Fully-associative

Set Associativity

Figure 4.141nfluence of Varying Compression Cache Set Associativity on Performance
and Energy: Extra cycle penalties are the least for fully-associative caches.

In MLRU, if a block was not accessed soon after it was brought into the cache, then it is
replaced. This helps eliminate one-touch references. To implement MLRU, before an entry

in asetis replaced, we update the value of the LRU counter with the kBlug,as follows:

LRUnew= L +0.25x N,

wherelL is the LRU counter value for the least recently accessed entry in the sé&t and
is the total number of entries is a set. Thus, in our implementation, the incoming entry is
assigned an LRU value 25% above the currently least recently used entry. Our results shown
in Figs. 4.17, 4.18, 4.19, and 4.20 indicate that the basic LRU scheme performs the best in
terms of both performance (extra cycle penalty and miss rates) and energies. Higher order
portions of addresses which are stored in our compression cache tend to be more similar—

134

On-Chip Energy Ratio Variation Across Different
Set Associativity of Compression Cache for BE

1.05 -

—l —ie— K 24-bit

2
N
<
=4
g 0957 \
80
=
@
=
m \
2 09 ——< 16-bit
<
= S L .
=} v —e S-bit
0.85
\ —— —— —A 12-bit
- — 10-bit
0.8 \ \
Direct-mapped 2-way 4-way 8-way Fully-associative

Set Associativity

Figure 4.151nfluence of Varying Compression Cache Set Associativity on Performance
and Energy: For most bus widths fully-associative caches also result compressed addresses
that dissipate least energy during transmission.

the same (recently used) entry will be accessed again—and one-touch references are highly

unlikely to occur. Hence MLRU and FIFO perform worse.

4.4.7 Influence of L1 cache size

The L1 cache size may also potentially affect the density 6f-L2 address traffic and
hence the performance and energies when address compression schemes are used. We ex-
perimented with seven different L1 cache sizes with 2-way set-associativity and the results
are shown in Figs. 4.21, 4.22, and 4.23 for six different compressed bus widths: 12, 14, 16,
19, 20, and 24 bits. The results show that, as expected, the extra cycle penalty decreases

for larger L1 cache sizes since the address traffic reduces and the references are also spaced

135

Off-Chip Energy Ratio Variation Across Different
Set Associativity of Compression Cache for BE
134

1.25 4
2 1s ¢ .
s " ® S.bi
S ¥ 8-bit
>
o0
o
£ 115
S 1.
=
=
g
el
S
g 1.1
= m——
— 10-bit
1.05 16-bit
* A 12-bit
. . — —He— » K 24-bit
Direct-mapped 2-way 4-way 8-way Fully-associative

Set Associativity

Figure 4.16:1Influence of Varying Compression Cache Set Associativity on Performance
and Energy: Off-chip bus energies also reduce when the associativity increases.

wider apart. For energy dissipation in on-chip buses shown in Fig. 4.22, most wider buses
(19, 20, and 24 bits) show an increase in bus energy dissipation with larger L1 cache sizes.
This may be because L1 cache misses that occur are spaced wider apart in time and hence
these miss addresses are likely to be dissimilar resulting in more switching transitions. For
off-chip buses a similar trend—some buses becoming more energy-efficient and others be-

coming less—can be observed.

L1 miss address buffer
In a pipelined processor, misses in the L1 caches are often buffered in a miss address file
(MAF) and dependent instructions are not allowed to advance to the next stage until the miss

is serviced. This delay adds to the overall program execution time but, in some cases, it may

136

Extra Cycle Penalty Variation Across Different
Replacement Policies for BE

6.000 - 9 =
R =_% |DFIFO BLRU OMLRU
Ew 23w
w i
5.000 -
s
Z. 4.000 -
=
[
=
& <
3.000 - 2
= K
&} «
S 2,000 -
5
=

1.000

0.000

20-bit

8-bit | 10-bit | 12-bit | 16-bit 32-bit| 8-bit |10-bit | 12-bit | 16-bit 24-bit | 32-bit

20-bit

24-bit

4-way 8-way
Compressed Bus Width (Bits)

Figure 4.17:Influence of Varying Compression Cache Replacement Policy on Perfor-
mance.

also lead to stalling of the pipeline. In our target system, we have assumed that the address
compression hardware takes missed addresses from the MAF, compresses it and transmits
on the bus in a single cycle (if the compression cache has a hit) and in multiple cycles (if the
compression cache misses). Increasing the size of the MAF can, to some extent, offset the
extra latency due to misses in the compression cache. We experimented with six different
MAF sizes: 8, 16, 32, 64, 128, and 256 and three L1 cache sizes since lower miss rates for
larger cache sizes will also reduce the need for larger MAF bulffer.

Results for this experiment with five different bus widths are shown in Figs.4.24, 4.25,
and 4.26. In Fig.4.24, we observe that, for all bus widths and L1 cache sizes, increasing the

MAF size from 8 to 16 entries reduces the extra cycle penalty by a small amount but further

137

Miss Rate Variation Across Different
Replacement Policies for BE

s
0450 1=2_< geg
;go ;c\e' ‘DFIFO B LRU OMLRU
0.400
0.350
Ren I R &
] NS IS
0.300 S8d 3as
% 0.250 —a® S..2
I~ Ngg o]
@ R oS
= 0.200
=
0.150
222
S32
0.100
adz
0.050 - ggo coo oo
SO S
S22 333
0.000 - See eee

1 2 3 4 5 6 7 8 9 10
Compressed Bus Width (Bits)

Figure 4.181Influence of Varying Compression Cache Replacement Policy on Miss Rate.

increase in the MAF does not result in much benefits for most buses. Also, even for small L1
cache sizes (16KB), increasing the MAF size to 16 entries with a compressed address bus
24 bits wide, results in a net reduction in program execution time as seen from the negative
value of extra cycle penalty. If L1 cache size is increased to 64KB, the percentage reduction
in execution time also increase. Thus, address compression can actually reduce program

execution time for a modest increase in the size of the MAF.

4.4.8 Address compression across memory system levels
In our previous experiments, address compression was applied to only thed hus.
In this experiment, we apply compression on: (1)>t® address bus separately, and (2)

in combination with L1-L2 address bus. Results are shown in Figs. 4.27 and 4.28. From

138

‘ABiau3 diyp-up
uo A21j0od uawade|day ayoe) uoissaidwo) Bulhie Jo aduan|ul:eT 7 ainbi4

(sng) WPIM sng passaxdwo)
Aem-g Aem-p

Nnq-2¢ | Nq-v¢ | 1q-0C | 1q-91 | Mq-T1 | 31q-01 | 3q-8 Nq-¢€ Nq-pT | Nq-0C | Nq-91 | Nq-C1 | 1Nq-01 | 31q-8

NATIN
NA'1
od14
QA TN
0241
o414
QA TN
0241
od14
A TN
02: 41

000°0

= E Z B E
il | E) |)) |)) | 1
<R =X A" RRERRERR
cc cocoacocaoacac

%.uu.osm uejnede)-JPS @

A339uy] 33aey)) pue IZIBYISI(] %€~ BISELL %IEY9 NATIN
Busﬁ_umamo-w:.wa:ao B || %V6€9- %LOEST %IT0°L AT
£ Uy IV9'9- %BYeELLL %0099 OoAd14
3330, :dduejnede)-suridno))] U “XEBIAl AV | Suireg A31duy

¢ 10 m@mo:ca.m judwdR[day
JUAIDJJI(J SSOIIY UONBLIBA oney Asrouy dig)H-uQ

- 00C°0

- 00¥°0

- 009°0

- 008°0

oney A31uy dig)H-uQ

- 000°T

- 00T°1

139

Off-Chip Energy Ratio Variation Across Different
Replacement Policies for BE
1.300

——FIFO
==—LRU

1.250 - = MLRU
£ 1.200 -
=
[~
i
201,150
@
=
=
£1.100 |
=
<
&=]
o) 1.050

1.000 -

0.950

8-bit | 10-bit | 12-bit | 16-bit | 20-bit | 24-bit | 32-bit | 8-bit | 10-bit | 12-bit | 16-bit | 20-bit | 24-bit | 32-bit
4-way 8-way

Compressed Bus Width (Bits)

Figure 4.20:Influence of Varying Compression Cache Replacement Policy on Off-Chip
Energy.

Fig. 4.27, we observe that the extra cycle penalty when the 38-bitM2address bus is
compressed to 8 bits is only 1.65% and similar to the trend observed earlier forthead 1

bus, the penalty begins to drop off rapidly for larger bus widths. Also, the trend is similar
when both L1-L2 and L2—M buses and addresses are compressed, but higher penalties are
incurred. It can also be noted that the combined penalty is slightly less than the penalties
when the buses are compressed individually. From Fig. 4.28, we observe that compressing
L2—M addresses slightly worsens bus energy except for wider buses (24 and 32 bits) in

which case the bus becomes energy-efficient to a small degree.

140

Extra Cycle Penalty Variation Across Different Sizes of Level 1 Cache
3 .

|——12 = 14— 16 % 19 20 =24 |

2.5 A

1.5

Extra Cycle Penalty (%)

0.5 - ——
e
= — — - T —
0 o— ——— s —% S 3
4K 8K 16K 32K 64K 128K 256K

Level 1 Cache Size
Figure 4.21:Influence of Varying L1 Cache Sizes on Performance.

4.5 Conclusions

In this chapter, we comprehensively analyzed system performance, bus energy dissipation,
and cost savings (due to reduction in number of bus lines and associated hardware) when
address compression schemes like dynamic base register compression or bus expander are
applied to the L1-L2 level address bus. With simulations using a cycle-accurate simulator
for fourteen SPEC CPU2000 benchmarks, we found optimal compression cache sizes that
results in minimum extra cycle penalty, for each of these schemes, and for a wide range of
compressed bus widths. We also reported energy savings, compression cache miss rates,
and address compression ratios for the optimal configurations. We showed that aggressive
bus-width reduction (as much as 63%, for example) will result in only an extra cycle penalty

of about 1% or less and that energy dissipation in address buses will reduce appreciably (up

141

On-Chip Energy Ratio Variation Across
Different Sizes of Level 1 Cache

1.05 -
——12 814 =16 %19 520 24|

=4

N

(7]
1

=4
o
n
1
p
L 4

On-Chip Energy Ratio
& (=
o

0.8

0.75

4K 8K 16K 32K 64K 128K 256K
Level 1 Cache Size

Figure 4.22:nfluence of Varying L1 Cache Sizes on On-Chip Energy.

to 13%) with compression for current technologies. These savings were found to increase

for future nanometer technology nodes.

142

Off-Chip Energy Ratio Variation Across
Different Sizes of Level 1 Cache

1.2 4
——12 814 —— 16 %19 <20 —o-24|

1.15

=
=
I

Off-Chip Energy Ratio
s
]

0.95
4K 8K 16K 32K 64K 128K 256K

Level 1 Cache Size
Figure 4.23:Influence of Varying L1 Cache Sizes on Off-Chip Energy.

143

‘@ouew

-lojlad uo sazIS Jayng pue ayoe) T Bulkre Jo asuanjul:yz ¢ ainbi4

(s1g) WPIM sng passaadwo)

%,) K)eudd IPL) enxy

N’

I +9 oI 91 - 00S°0-
ve | ot | 91 | w1 | T ve | ot | 91t | vI | T
[y T .0.0.0..0.00 == — | [T @Q@.Q
..... = .0.0.00-0.0 .u ."."."."0
R Sy e ES
PO Sooeso - 005°0
TIoIE 220208
=N atatet
"Ry _9 - 000°'T
..... (=Y
[I[I.VW
- 00S°T
dnirinin
- 0007
?zzﬁégm - 00S°T
9STI STIM $9[1 CEC1 9T (nejop) Q| :JI3JJnq Ul SALIYUD JO # 000's

" I0J SIZIS AYde)) | [9AY] puUe sIjyng
JUIIRJJI(J SSOIIY UONJBLIBA AJ[BUDJ J[IA)) BIIXH

144

‘ABiau3]
diyd-uQ uo sazis layng pue ayoe) 17 Bulhie Jo asuanjurgz v ainbi4

(SNg) WPIA Sng passsaduio)

o1 9 o1 91
vT 0T 91 b1 41 ve 0T 91 pI 41
Fereoxdll BE FEE BE TEE B e vyt =
..... SSSS e Soooc- SRR
......... ol 22esse S Sooodd oosedd S5SSSe TR
59959" .OIM KK o= %2 ,_066660“ Locieee /ZLlfx/.L
= = n =
967@ STIM P90 €0 9TH (INeJdp) §M | :I13gynq ur SILHUD JO #

g I0J SIAZIS YIe)) | [PAI] puUe SIdJng
JUAIDJJI(J SSOIIY UONBLIBA onjey Asruy dig)-uQ

- 000°0

- 00C°0

- 00¥°0

- 009°0

- 008°0

- 000°L

- 00T

uQo

oney Asmuy diyH

145

diyD-4O uo sazIs Jayng pue ayoe) T Bulhlea Jo
(syg) WPIM sng passaadwo)

‘ABiau3]
aouan|ui9z’ ainbi4

oI 9 a1 91
ve 0T 91 ! 41 ve 0T 91 4! 41

—+ 0S8°0

- 006°0
<
B
- 0S6'0 A
S,
o= E
s 000 &
[\&)
2 S 03
Z o o o o PA
SRR comd | - 0S0T
= "t EEEE S 5

- o = ~oorT

2 = s
wn - M 0
H n
- L 0ST'Y

9STI SCI M v9 7€ 01 91 W (3IneJp) 8 @

:13JJnq Ul SILIJUD JO #

" 0] SIZIS AYde)) | [FAY] puUe sIyng
JUIIRJJI(J SSOY uonerie A oney Asuy dig)y-1oO

146

‘S|9A97 WIBISAS AlowaA 1uUBIayIq SS0I0Y UuolIssaldwo) SSalppy. .2’y 9i1nbiH

(sNg) WPIA sng passaadwo)

nq-ze nq-pc 1q-0T

1q-91

nq-z1

nq-g

sng SSAIPPY N T— 11—
sng SSAIPPY N1 —=
sng SSAAPPY T T T —

A 10J SPPAYT AIOWIJA SSOIDY UONBLIB A A)[BUDJ I[IL)) BIIXH

vor'9

(%) Kyreudd IPA)H enxy

147

"S|oAaT WBISAS AloWwa JuaIayig SS0JIY UoIssaldwo) SSaIppPY.8Z + 9inbig

(s1g) WPIA sng passaaduwio)
Nq-z¢ nq-yT nq-0c7 1q-91 nq-z1 1q-8

666°0 000°L 666°0 2001

6911 rrgerr | ¢l

Sn{ SSAIPPY N<—CT'TH SN SSIPPY ¢TI I'ITEH L ¢

A 10] SPAYT AIOWIA SSOIY uoneLe A oney Asnuy dig)-o

oney A3uy diyd-po

148

Chapter 5

Energy-Efficient Compressed Address
Transmission and Partial-Match Address

Compression

5.1 Introduction

Nanometer design, which will soon make billion transistor chips a reality, has been plagued
with many problems that are related to the interconnect system [46]. Some of these problems
are increasing delays in interconnects routed in the global layers, where most signal lines like
address, instruction, and data buses are routed and increasing power consumption and signal
integrity/reliability problems in these buses due to coupled inductance and capacitance ef-

fects. In deep sub-micron (DSM) design, circuit techniques like wire and driver sizing, use of

149

repeaters, etc. and/or physical design techniques like power- and delay-aware routing were
adopted to keep such problems of interconnect scaling in check. But, due to rising number of
metal layers, smaller spacings and hence the explosion in the amount of inter-wire coupling
(both inductive and capacitive), such schemes are no longer complexity-effective for current
nanometer designs. In contrast, an effective and scalable solution to alleviate the problems
due to the interconnect system in nanometer design is to consider architectural-level tech-
nigues that can reduce the pressure on the interconnect system and remove or reduce the
reliance on interconnect-aware circuit and physical design.

Since bus lines constitute a bulk of the interconnect system in the upper metal layers,
many schemes involving encoding of data transmission for energy, delay, and cross talk
have been proposed. Some older schemes use the fact that switching activities and hence
energy dissipation in bus lines can be reduced by exploiting the spatial locality of information
[6]. Others like the bus-invert scheme require no prior knowledge of data statistics [60].
Recently, due to the dominance of inter-wire capacitive coupling, encoding schemes that
minimize inter-wire transitions have been proposed [77, 34, 58]. Another way to possibly
reduce bus energy dissipation is compression—compression followed by encoding has been
found to yield highest energy reductions for buses [50]. In a compression scheme for buses,
data to be sent is compressed and transmitted on a narrow-width bus if the compression is
successful or transmitted in multiple cycles if not. Compression can also result in overall
cost benefits since savings obtained by reducing the number of bus lines, associated drivers,

and repeaters can outweigh the area/cost incurred by the compression and decompression

150

hardware. However, when transmitting compressed information over narrow-width buses,
energy dissipation may actually worsen if: (i) the compression hardware is unsuccessful
most of the time, or (ii) bits of the compressed addresses are misaligned so as to cause an

increase in the number of self and inter-wire transitions.

5.1.1 Scope and contributions of this work

Some previous work has proposed compression and decompression schemes for address,
instructions, and data primarily to improve bandwidth and latency for buses [52, 11, 10].
The effectiveness of a compression scheme in reducing the switching activity in off-chip
data buses was studied in [3] and these results are not necessarily relevant to on-chip buses
in current nanometer-scale technologies where coupling capacitances dominate. Recently,
energy efficiency of various data-value prediction schemes—which are often viewed as pro-
viding performance enhancement—were studied in [68] for on-chip data buses and in [63]
for off-chip data buses. Thus, no previous work has considered energy-efficiency as a goal
when designing compression schemes for buses.

In this work, we propose various techniques that can be used with existing compression
schemes for buses to ensure the best energy-efficiency for compressed information transmis-
sion. Note that these techniques are complementary to others like bus encoding which can be
applied after compression or techniques like low-swing signaling [75], charge recycling [33],
or wire optimizations like spacing and shielding [13]. In fact, the area/cost of circuitry that
is saved by adopting compression can be used to increase spacing or insert shield wires to

obtain further benefits. Although the ideas behind many of our techniques are broadly appli-

151

cable to all buses (address, instruction, and data), the techniques presented in this chapter are
somewhat specialized for the purpose of address compression. In addition, we propose new
and optimized designs of compression-caches that are different and perform substantially
better compared to those proposed earlier.

In Chapter 4, our simulations have shown that BE works better for on-chip address buses
than another scheme, DBRC. Hence, we use BE as the default address compression scheme
in this work and report energy reductions using our techniques for this scheme. However,
many of our techniques will provide similar reductions when applied to the DBRC scheme
also. The simulation methodology used in this study has been mentioned earlier in Sec. 4.3.

We will first present our proposed transmission techniques and results. The transmission
techniques are based on the techniques proposed earlier for HOC in Sec. 3.7. Similarly,
each successive technique we present is an improvement over the previous one and results in
progressively better energy reductions. Then, in Sec. 5.8, we will present a highly energy-
and performance-efficient dynamic address compression methodology for nanometer-scale
address buses designed to improve the hit-rate and reduce miss penalty of dynamic compres-

sion caches and hence improve performance, energy, and cost.

5.2 Technique 1: Bus arrangement
It can be observed easily that, with the default transmission format described in Sec. 4.2,
when misses in the sender cache occur and addresses have to be transmitted in full in multiple

cycles, bus energy dissipation will be higher because of misaligned bits, i.e., bits that have

152

no correlation with bits in the same position transmitted in the previous cycle—causes a
self-transition—and bits that are uncorrelated with neighboring bits in the same cycle which
causes coupling transitions. Hence, in Chapter 4, we have modified the original transmission
format used for BE to improve its energy efficiency by rearranging some of the fields to
reduce unwanted self and coupling transitions, which is shown on the left in Fig. 5.1. In
this section, we propose a new transmission format for compressed addresses—separately
for hit and miss cases—based on the following principles of arranging the different fields to
minimize self and coupling transitions.

Due to the highly sequential nature of addresses, the least significant bits (LSB) of the
address will be the most active. For this reason, in address compression schemes, the lower
order portion of the address is not compressed. To reduce the coupling energies of the lower
order portion of the address (U-field), we placg the LSB of the U-field in the MSB line
of the compressed bus during the hit as well as during the first cycle of a miss as shown in
the figure on the right in Fig. 5.1. Thus, the bi{ dow occupies the LSB line of the bus
and its coupling energy is reduced because it can no longer cause a toggle transition with
the W bit. Further, the | bit which has been placed next to the C-bit also results in lesser
coupling energies since its neighbor is expected to change state less frequently because of
high hit rates in the sender cache. Also, the edge lines have less coupling capacitance since
they have only one neighboring line and this will lead to lesser coupling energies. Note that
we rearrange bits as described above only during a hit and the first cycle of a miss because,

for subsequent cycles of a miss when the H-field is transmitted the two least significant bit

153

line may not necessarily be the most active lines to warrant being decoupled from each other.

T, | 1| u |

Original Address | T, Tu

Lastcycle Ty Tu |

2nd cycle | Ty T |

1steyde |[C]T] | | U |

Miss Pattern

Cw| 1+ | U |

Hit Pattern

BE Transmission Format

Lastcycle T, Ty |

2nd c.:ycle | Tu T, |
1st cycle |U0TL| I | Ue |
Miss Pattern
[ofefw] 1 | ue |
Hit Pattern

BA Transmission Formal

Figure 5.1: Proposed Bus Arrangement Techniques.The figure on the left shows the

new basic transmission format that we propose for the BE address compression scheme.
The figure on the right further reduces energy by rearranging some bits to reduce unwanted
coupling transitions.

5.3 Technique 2: Idle-bit insertion for coupling energy re-

duction
When a missed address is sent in multiple cycles over the narrow-width bus, the last cycle
of transmission of the address is likely to be poorly utilized. This effect is more pronounced
when the compressed bus width is a non-integral fraction of the uncompressed address width.
In such cases, thdle bits can be used to reduce coupling energies by placing them between

activebits in different cycles of the miss. Note that if a bit is designated as idle in the current

154

cycle, then it means that it holds the value from its previous cycle. Thus, an idle bit can never
have a toggle transition with either of its neighboring bits for the current cycle.

Given a fixed number of idle bits that we can insert, we first place idle bits at the W-field
in the first cycle of the miss transmission which will potentially help reduce the coupling
energy for that cycle. This is because the W-field is un-correlated with its neighboring fields
and inserting idle bits between them reduces the chance of unwanted coupling transitions.
Next, we assign the maximum possible number of idle bits to the second cycle of miss
transmission. For av-bit compressed bus the maximum number of idle bits that can be
assigned to each cyclelig//2|. Now, supposé bits were assigned to the second cycle, then
the idle bits are interspersed alternately with active bits in the cycle starting from an active
bit at the LSB to achieve maximum benefits for coupling energy reduction. After assigning
to the first and second cycles as above, if idle bits remain, then they are assigned to the third

cycle and so on till all the idle bits are exhausted.

5.4 Results for Address Arrangement and ldle-bit Inser-

tion
Results for address arrangement combined with idle-bit insertion technique compared to
the default transmission format for BE are shown in Fig. 5.2. The results show that, in
all cases, net energy reductions are obtained over the default transmission format used for
BE. Average energy reductions are about 5.5% with our proposed address arrangement and

idle-bit insertion techniques. Further, most of the energy reductions are obtained as a result

155

of reduction in the number of toggle transitions. In most cases, where the bus widths are
reduced less than 50%, the default BE scheme results in an increase in energy over an un-

compressed bus, but with our techniques energy reductions are obtained in almost all cases.

5.5 Technique 3: LRU-encoded way-bits

We call this scheme BAL (Bus arrangement + LRU-encoding) and it applies only in the
case of compressed addresses transmitted during a hit. We replace the W-field, which nor-
mally points to the way number of the tag that hit in a particular line of the sender cache, with
the least-recently-used (LRU) number that the sender cache maintains for each entry. This
encoding of the way-bits using the LRU-value is motivated by the fact that, in the sender
cache, the most recently accessed entry is likely to be accessed again and in this case an
LRU value of zero will be used to encode the way bits. If the most recently accessed is not
accessed again, then it is highly likely then the one with the next higher LRU value (equal
to one) will be accessed. Thus, compared to the previous transmission the LRU-encoded
way bits will cause only transition in only one bit. If the way bits were not LRU-encoded,
then they can take one afdifferent values in 0...,a— 1, a being the set-associativity of
the sender cache. Our argument that LRU-encoded way-bits will take the zero value most
of the time is supported by simulation results shown in Fig. 5.3. This figure shows that, for
most bus-widths and set-associativities, way-bits encoded with LRU values are zero-valued
and remain unchanged more than 50% of the time and this may lead to substantial self- and

coupling-energy savings.

156

‘anbiuyoa
uswabuelre-ssalppy pasodold ayl Buisn uononpay Ablau3 :z'G ainbi4

[sng S1PI] (SHF) WPIA sng passsadwo)

[219¢ | [clce [2l8c | [clve | [elce | [11oz [81]el [stl8Y| (6191 |[€1¥1 [6lcr |[1lOT | [1]18
A& HCEIAANIC R IMA ICE A HIC R IRA HCE AMA HIC R IA HICE AAA HIC R ARA HICE AAA HIC R ARA HICE A4 QIC L ARA IC E! |
sH =sH =sH =sH =sH sH sH 2H eH =sH sH sH sH oH sH s = H sH oH eH sH eH e esH o[= 00°0
A E R E R E R B B E EE B P EP EPEPEPEPEE HIE
0T°0
2B EEEEEEEEEEEEEEEEEEEER BB
o0
i S H T M | = [+ 090
TARNANAN ARG G YL 08°
SR I FN I I||||H|.[n|||||||H||||..I||I. |||||||||||||||||||||||||||| 00'1
A3xduy ddueynede)-J9S O % @Hbawl %€9¢°0C %08S°S vd
£3aduy adaey) pue AZaeydsi(] :dduejede)-suridno) @ %6£6'8 %LY00'8T %ISY'E Hd 01
£3a3ug ddaey)) :ouejede)-guridno) "UIIA XCJAI .M>< w=_>&m A3xouj

JudwWRdURIIY Sng Y)IM [IPIM sng

PIsSsSAIdwo)) JUAIIJJI(J SSODY UONBLIBA oney Astuy dig)-uQ

oney A3xuy diyH-uQ

157

0O
Im
<
e
4 |
sO
N
LO
SH
6l
orgd
mnao
am
¢Il
148
SIN

Aem-91

(4>

Aem-g
Kem-p

Kem-g

‘s1ug Aepn papooua-Ny1 Ag uayel sanjep Jo Aoduanbal4:e'g ainbi4
(s1g) WPIM sng passardwo)

(4

Aem-91
Aem-g
Kem-p

Aem-g

Aem-91

0¢

Aem-g
Kem-p
Aem-g

Aem-91

91

Aem-g

Kem-p

Aem-g

Aem-91

4!

Aem-g
Kem-p

Kem-g

Aem-91

1)1

Aem-g

Kem-p

Kem-g

Aem-91

A)IADEID0SSY 198

8

Aem-g

Kem-p

Kem-g

SAN[BA ABAA PIPOIUH-NY'T JO Sanuanbaay

%0

%01
% 0T
% 0€
% Ov
% 0S
%09
% 0L
%08
%06

%001

(25) £ouanbaay

158

Energy results for compressed address transmissions with and without using LRU-encoded
way bits are shown in Fig. 5.4 and Fig. 5.5. In this study, we varied the set associativity of
sender cache from 2-way to 16-way. Note that using direct-mapped caches does not make
sense for this study since there are no way bits to encode in that case. Also, we considered
the maximum size of the E-field to be 4 bits and hence 16-way set associativity represents a
fully-associative sender cache. Average energy reductions of about 12% were obtained for
on-chip buses due to reductions in both self and coupling energies with LRU-encoded way-
bits. With off-chip buses energy reductions ranging from 0.8-4.5% were observed due to re-
ductions in self-energies. It can also be observed that, in both cases, higher set-associativities
yield better energy savings when LRU-encoded way bits are used. This is because higher

set-associative caches provide better hit rates.

5.6 Technique 4: Encoding higher order part of the ad-

dress
In this scheme, we encode the higher order part of the address (also called the tag-field
since it is stored as tag in the sender cache) using a two step XOR process as shown in
Fig. 5.6. Note that computing bitwise XOR of twebit addresses requires constant time
and little hardware and hence this will not add much extra latency to the bus interface. We
call this BALT (Bus arrangement + LRU-encoding + Tag-encoding) and it is applied only in
the case of a missed address.

First, the H-field of the current address is XOR-ed with the H-field of the previous address.

159

SN
-RID0SSR 189S ayoed uoissaidwod ualaylp 1o} ones uonedissip ABlaua sng diya-uQ
:anbluyosal ug-Aepn papodus-Ny ay1 buisn uononpay Abisu3:y'G ainbi4

(s1g) PPIM sng passaadwo)

(43 ve 0T 91 4} 01 8
AemAemAem femAemAem Aem AememAem Aem Aem femAemAemAem femfem femfem femfem em Aemfem femfem em
91 -8,V |-C|91, 8 ¥ |-C|91T -8 ¥ -9 8 |F¥ | -C|I9T 8 |¥ | -C 9T 8|V T 91 8|V |
WHWHWHWHWHWHWHW = > = VH V HHVHVHV HHVHVHV HHVHVHV HHVHVHV
| | | | 3 | | | B 3 | o o VTVT || VTVTVT V VTV VTVTVT. VTVTVT
A319uj] dueinede)-jJS @ . . .
BEV'E WBLYI'IT OLY'TL Vd
£31ouy ddaey) pue agaeydsi(:ddueinede)-gurdno)) g %BILT'S- %S0S0T %6916 v
£319uy 91330 :90ueynede)-gurdno)) UIA XBJAI ‘8AYV Suiaeg A3muy

a
S

=
S

o
<

e}

S
oney A3muy digy)-uQ

T
—

KBAA PIPOIUH-NA'T YIM YIPIM sng passdaduwo))
JUAIRJJI(J SSOIIY UoneLIBA oney A3xduy] dig)-uQ

[
R
v

160

"SAINIAN

-eI00SSR 189S aYord uoIssaidwod uaiaylp Jo} onel uonedissip ABisus sng diyd-JoO

:anbiuyosa] 1g-Aepn papooua-Ny1 ayl buisn uononpay Abiau3 :g'q ainbi4

(s1g) WPPIM sng passaadwo)

ABAA PIPOIUH-NAT YPIM YIPIM sng passdaduio))
JUIIRJJI(] SSOIDY UoneLIe A oney Asuy digy)-o

(4% 144 0T 91 4! o1 8
ek e ek e e e ek
AN Bl S I AR ol I sl Bl B AN B B sl Sl B AN ol B el S I AR I ol I sl Il AN Bl B sl Sl B AN ol B el B
- R - - T - T R e I~ R R T e~ T = B T~ R B~ T A~ B B O~ B R - R R
(=T - - - - X -~ T - -~ A -~ - N - ~- - -~ - -~ - -~ - - - [~- I -
< <9 | <9 |<¢9 <9 | <9 | <9 < <9 <9 | < 9| <9 | ¢ < <9 < <9 <9 | < < <9 | < <9 <9 < < <«
006°0
- = m o= s © o o 156°0 - 056°0
= 22 g
sEEzzez: 0w
—a—-u—-u .'#ﬂ - 000'TQ
S22 25332 .O:meIc.J.IJIINIS. 2
LEO'T : bSO’ 050°1 =
L90° S0TRcote—0y S
PLOT bLO'T 990T890°1 TsL0'T o
- 00I°T S
%0000 %0000 2%000°0 nq-ze e
BITV'0 BOLL'L %PrS0 Nq-$T - OST'I<
%6IY'E e8IV %08L'E 1q-0T W
-
%BTEET %9009 %SLY'Y 1q-91 - 00T S
%868'T %8TL'9 %YSEr Nq-zI
BITOT WLLLS %E80P 1q-01 - 0ST'T
oyl wHSSI'S %8LS’E nq-s
UIAl XA ‘SAV jJuduwAoxduuy L 00€'T

161

Due to temporal and spatial redundancy of the bits, the result will have more zero-valued bits
than the H-field of the current address. However, this XOR-ed form of the H-filed may have
a power disadvantage. To rectify this, in the next step, we again XOR each bit of the new
H-field with the bit transmitted at the corresponding bit position on the bus in the previous
cycle. Since the first step yielded more zero-valued bits, the next step will make the H-field
pattern similar to the one transmitted on the bus in the previous cycle thus reducing both
self and coupling energies. It can be observed from results shown in Fig. 5.6 that compared
to the previous scheme (BAL), H-field encoding alone can result in extra average energy
reductions of nearly 3.3% for on-chip buses and about 13.4% for off-chip buses. It can also
be observed that this scheme provides the best energy reductions for off-chip buses because,
by doing two-step XOR operation, the self energy between the the tag bits transmitted at the

same position in two consecutive bus cycles reduces since the bits are likely to have the same

value.
Previous H-field
I I
‘ Current H—field \LJ/
wis -
11 =
== L
1 il L %
---------------- @ F FE ~~ |FE
_rl —
XO0(t) |

X1()
Xn—=1(t)
Figure 5.6:Structure for Encoding the Higher Order Part of the Address.

162

5.7 Technique 5: XOR encoding for the compressed ad-

dress

It was observed earlier that using an XOR form of the H-field for transmitting missed
addresses yield good reductions in self-energy and some reductions in coupling energy also.
However, by using an XOR form of the entire address before address arrangement, LRU-
encoding, or tag-encoding are applied, further coupling energy reductions can be obtained.
Hence this scheme is called XOR-BALT.

In this technique, the incoming (uncompressed) address is first XOR-ed with the previous
address and this XOR version of the address is used to form the compressed address depend-
ing on whether a hit or miss occurs in the sender cache. Note that we do not use the XOR
version of the address to look up the sender cache because we found that doing so leads
to no substantial performance or energy benefit. Thus, in the case of a hit, the U-field and
the I-field which are obtained from the original address are in XOR form but the control bit
and the W-field are not. The W-field is encoded with the LRU bits as discussed earlier. In
the case of a miss, all fields except the control bit are in XOR form and the H-field encod-
ing is done as described earlier; note that the first step of the two-step XOR process for tag
encoding is already done in this case. Results in Figs. 5.7 and 5.8 show that this scheme
results in about 0.7% better energy reduction than the previous scheme on the average for
on-chip buses but also results in a 0.3% degradation for off-chip buses. The reason for this

degradation is that, every bit transition in the original trace will cause two bit transitions in

163

the XOR trace, except when consecutive transitions occur in the original trace (not likely),
in which case there will not be any transition in the XOR trace.

In addition, we apply the technique 5 proposed in Sec. 3.7.6, which use the idle bits as
active shields, on top of the XOR-BALT. We call this scheme XOR-BALTI (XOR-BALT +
Idle-bit encoding). Results for the XOR-BALTI scheme in Fig. 5.7 show that this scheme
performs the best for on-chip buses yielding about 14.7% energy reductions on the average

for compressed address transmission.

5.8 Partial-Match Compression Cache

To improve the hit-rate and reduce miss penalty of the compression cache used in the
previous schemes, we propgsartial-matchingof the tag portion stored in the compression
cache with the higher order portion of the address. In partial-match (PM) compression-cache,
we check for the longest match between the tag portion stored in the cache and the higher
order portion of the incoming address. We consklpossible groups of bits ending at the
most significant bit (MSB) of the incoming address as shown in Fig. 5.9. For the hardware
schematic shown in Fig. 5.10, the valuelois four. If a partial match in any of thede
groups occurs, the control number for each group is transmitted along with the index. The
remaining portion of the higher order part of the address (that did not match the tag) are sent
in uncompressed form, as is the lower order portion of the address. In case of a miss, where

none of the partial matches succeeded, the entire address is sent.

164

‘'sanbiuyoa] pasodoid ayi || Buisn uononpay Abiau3 diyd-uQ:/ G ainbi4

SuIpodud-Iq-3PI+LTVI+IOX [ILTVI-40X

LIVI+IOX (L' IVI-d0X
Suipodud-ge I +3uIpodud-N) Y THudwRsuelIe sng 11 1vVd

Surpodud-)Y THudwSueLIe sng TVg
juuSueLIE sng vy

Jg-nnepdq qdd:

(sng) WPIM sng passaaduio)

(4% ve 0T 61 91 14! (41 01 8
P > P » > > > b >
28 28 28 28 28 28 28 28 28
oft il EE il EE EE il EE EE
O O O O O < O - Y
= = = = = = = = =
2S5ezEa55e28a55228a55e28a55228555238555258:55428555¢4z¢
000°0
=
- 0020 %
e
- 00F c..m.
- 0090 5
(¢°]
.]
- 008098
- 0001 m
%BTINE %TOL'VT %SILPL +ILTVI-40X =
BTINE %60V'LT %BLITHL <LIVE-4OX| L 00T'T
BOTIL'T %T999IT %ESEL LIV
BILET" %6E6'ET BHTTOT IV
AZraug ddueypede)-jPS M %L8YT- BSLEOT %LO006 =V
A3xuy ddxey) pue ddxeyasi(:duepede)-3uridno) g %8IS'T- %H00'8T %0989 +Hd
£3xduy 91830] :90ueede)-surdno))] UIIA XBIA 7\ Suiaes A3xoug

SOUWAYIS UOISSTWISUB], JUDIIJJI(]
SSODY UuoneLiB A oney Astuy digH-uQ

165

‘'sanbluyoa] pasodoid ayl || Buisn uononpay Abisu3 diyd-40:8'g ainbi4

(s11g) WPIM sng passaaduo)
43 4 0T 61 91 ! (4| 01

SuIPodUd-NQ-PI+LTVA+IOX (LLTVI-40X
LTIVI+HIOX ‘L'TVI-40X

SuIpooud-3e] +3uIpodud-) Y T+ududuetae sng 1'1vVd
SuIpodud-)Y THUdWRSURLIE sng Vg

juuwRSuURLIE SN (Vg

Hg-Mnepdq ‘dHdx

%00L°0- %00L9T %S8LE'9 LLIVI-4OX

#LTVE-HOX 6= %BOOL'O" %O0OLIT %EEL9 LTVI-HOX
#WLTVEJOX =@= %009'0- %00E€'LT %9SO°L L1vd
LTV e %00V°9T- %001°0 %EEE9- Tvd

TV %00L°LT- %0000 %68€E L- vd

5V il %008°LT- %0000 %EEE'S- ad

G (¢ g - UIIAl XBJAI ‘3AY Suraes A3xouy

SOUWIAYIS UOISSIWISURL], JUSIPJI(]
SS0DY uonere A oney A3uy digq)-jJoO

008°0

058°0

0060

056°0

000°T

0S0°T

0011

0ST'I

00T’T

oney A3muy diy)-330

166

Partial-Match Logic (e.g. k=3)

Control number Tag Index U
< Hit Entiretag ———
01 < Part 1 ————»|
00 «—Pat2 —»
10 «— Pat3 —»
11 Miss entire tag

Figure 5.9:Partial-Match Logic.

5.8.1 Partial-match encoding and transmission format

The transmission techniques we proposed for BE can also be applied in PM transmission.
However, for tag encoding, the tag bits are XOR-ed with the tag in the PM compression
cache entry instead of the tag of the previous address when partial hit happens. Since the
tag of the current address partially matches the tag of the entry in the compression cache,
the result will have more zero-valued bits than XOR-ing the tag of the current address with
the tag of the previous address. As shown in Figs. 5.11 and 5.12, this technique provides the
same on-chip and off-chip energy reduction as the one we proposed in Sec. 5.6. The benefit
of applying this technique is that the performance of the compression can be improved since
the XOR tag can be taken from the comparison result obtained when checking compression
cache hit/miss instead of calculated separately. In addition, since the LRU-encoded way-
bits are zero-valued more than 50% of the time, shown in Fig. 5.3 and the percentage will

increase with PM, the LRU-encoded way-bits can be XOR-ed with the bits transmitted at the

167

"aWaYas uoissaldwod ssalppe yorew-fensed pasod
-04d 1o} uoneziuebio arempleH :ayoe) uoissaldwo)d Yore-jenred:oT's ainbi4

o0) . | (pwoo) Bel payoreuun | meG
S9[042 /) s\ e |dwo)D
10 ©@PA9I0 G E)SIH B | beLpoyruun [#d19 zofg
| <z>ONN | <>3 o] 1oko
EPAT)UHEPIEWOD | <z>DNN | <>3 1]
0 g
Bel psyorewun, #o, - <I>W/H <g>3
| LINN L
| THIND || €
Ve !
-z ” -
| e | XNIN
ke m =
m RSO Gl I N
| R
<pE>9V1 Josuolnod o14108ds
AJuo sayorew Joeredwod yoe3 +—19
————— </T>OVL—
N <YE>OVL <I>A
<6>OV1 _
<¢>0ONN <>l <yE>OVL

0 <> /€

168

corresponding bit position on the bus in the previous cycle before placed on the bus to reduce
self- and coupling-energy. The off-chip and on-chip energy ratios can be slightly improved
by 0.011 and 0.009 with way bit encoding, respectively.

In a partial match scheme withpartitions in the compressed portion of the address, the
starting bit position of each partition starting from the least significant bit (LSB)sB —

(14-C) —log,(E) —U]-1, wherecis the number of cycles required to transmit the codeword,
B is the narrow bus-widthC is the number of bits used for partial-match control number to
indicate which part has hiE is the number of entries in the compression cachelarsthe
width of the uncompressed portion.

For k partitions, we assign the k partial-match control numbers in two energy-efficient
ways based on the total frequencies of the partitions and the number of 1s in the binary
formats of the control numbers. For k partition, our first approach, control A (CA), is to use
log,(k+ 1) bits for the control numbers K+ 1 is power of 2. Otherwise, the first approach
is the same as the second approach, control B (CB). In the second approach, we use different
number of bits to differentiate the control numbers. If there is only one bit for the control
number, the control number is 0. Otherwise, all bits in the binary format of the control
numbers are 1s except the LSB bit. As far as the assignment of the control numbers, the
main idea is to assign the control numbers which have more 1s to the partitions, which have
lower frequency to minimize self and coupling energy. Fig. 5.13 shows the control numbers
used for k partitions in binary format. The transmission format for PM is shown in Fig. 5.14.

Since the control numbers change less frequent than the tag, the control numbers for the

169

‘'sawayds Buipoou3 juaiayiq o) INd o) oney ABiau3 diyD-uQ:TT'S ainbi4
@_6 PIPIM sng passaaduro)

8T 91 b1 4 01 8
- 000°0
- 00Z°0
- 00+°0
S L *
Seco W.%%.% 009°0
SSoo 28822 RRIS
2o o
Soos TOEE - 0080
L0550
Seoo Lo
RREE 3 ABMS
Seee oose SOose WMWW upooud- 55% s Ad . - 000°T
geee Trzr zmze GuSS SUIPOIUF -G T O
ERRR 3TTT 3% suipoduyy-3e 1 -INd H
Nd O

- 00T'1
SAURYOS SUIPodU YIJeJA-[eIed
JUIIIJJI(J SSONY uoneLie A oney A3ruy dig)H-uQ

oney Astuy dig)-uQ)
170

‘'sawayds buipooug jualiayiq 1ol INd o) oney ABisu3 diyD-4O:zT'S 24nbi4

(s11g) WPIM sng passaaduro)
(4% ve 0C 61 81 91 14 (4! 1] 8

gurpodurg-Aep\‘Se-INd |
surpodui-Ae pA-TAd [
suipoduiy-3e I-INd B

INd O

SOUWRYIS SUIPodUT YdjeJA-[enIed
JUIIIJJI(J SSONY uoneLie A oney As3ruy diq)-jo

- 000°0

- 00CT°0

- 00¥°0

- 009°0

- 008°0

- 000°T

- 00C°1

oney Asuy dig)-130

171

partitions are interspersed alternately with the tag bits in the second cycle starting from MSB
to minimize the coupling energy. In addition, before placing the control number on the bus,
we XOR each bit of the control number with the bit transmitted at the corresponding bit
position on the bus in the previous cycle. Since the higher the frequency of the partition, the
more zero-valued bits in the control number, the XOR operation will make the bit pattern of
the new control number similar to the one transmitted on the bus in the previous cycle thus

reducing both self and coupling energies.

k=1 k=2 k=3 Partition Frequency
0 0 00 highest
1 10 01
CA 110 10
11 lowest
0 0 0 highest
1 10 10
CB 110 110
111 lowest

Figure 5.13:Control Number Format for PM.

5.8.2 Average miss penalty and average bit penalty
We first collect the individual frequency (IF) for each possible partition ending at the MSB,
shown in Fig. 5.15 for n-bit tag field. Fig. 5.16 shows the individual frequency of different

partitions for different buses. The complete hit case is where the partition point equals to the

172

Original Address T,

Last cycle

2nd cycle

1st cycle

number of bits in the tag field. When the bus width increases, the frequency of complete hit
increases, which means partial-match compression will be more effective for narrow buses.

Based on the individual frequencies, we use the procedure shown in Fig. 5.17 to generate
the total frequency (TF) for the different partitions, which will be used to choose the best
partitions for performance optimization design and energy optimization design. Fig. 5.15
shows the total frequency for the j-bit partition starting from i Bif; ;.

There are two parameters we consider, average miss penalty and average bit penalty, when
we choose the best combination of different partition points. In the case of complete tag hit,
only one cycle is needed for the transmission, which is the same as BE. Miss penalty (MP)

is the extra cycles taken due to partial hit or complete miss. aMeeage miss penaliyf k

Ty T, U
% T, T, Last cycle % Ty Uy
T, : T, 2nd c::ycle C, [Tl C, TL: Co| T.
U,JCIT.| I [U, Isteyde fy,fefw] I | Uq
Complete Miss Pattern Partial Hit Pattern
U [C{W| | Ug

Complete Hit Pattern

PM Transmission Format (k=2)

Figure 5.14Transmission format for PM.

173

n-bit

/ \
Tag Index | U
IF o (Complete hit) < >
IF1 < »| o
IF 2 < - > 1
[}
IFj < : >|
IFi4 < >| i
IFi-2 B ° >I -1y
: |
. -2 :
IF i |
i-j+1 <—>|. > !
o I-j+1 |
J |
IF 15 S :
n-1 ! 0
IFh (Completemiss) n ' |
\ /

TR,
Figure 5.15:ndividual Frequency and Total Frequency.
partitions for n-bit tag field is as follows:
k
MP = ZMH X THn-it1
i=

The bit penalty (BP) is the extra bits transmitted due to partial hit or complete miss including
unmatched portion and control bits. Thus, #werage bit penaltyor k partitions is:

k
BP = ZBR X THn-it+1
i=

174

‘sasng passaldwo)
JuaJayiq 1o} Siulod uoniied ualaylg Jo Aousnbalq enpiAipul:9T'G ainbi-

[p8ua SeL] (s)g) YIPIA sng passdaduio)
[c1] [91] _w: ss :N_ ﬁ_ :& GN_ mﬁ [og]

[vl9€ [8lTe 8T T 1] Hﬂﬂw [v€l 9 Gm:u

IO 1A ¢
OLCE 8

|
SEN
oo

01
9¢

=
HCN

IR 7H
IR IO vIO SIO 9 IO 810 61
CH 6T 0EM I€EO T €0 vell se

tlH vH
[0CE
W 9¢ O

fjuIog uonnIeq

175

Procedure TotalFrequencyadiFrequencyTagLength TagLength

I* To determine allTotalFrequency, j] of interest.

TotalFrequency, j] := IndiFrequencyi] + IndiFrequencyi — 1] + ... + IndiFrequencyi — j + 1].
o<i<t,1<j<i.¥

Begin

For (i = 0,i < TagLengthi + +) begin

1. TotalFrequencf, 1] := IndiFrequenciil;

2. For (j=2;j <i; jt++) begin
TotalFrequency, j| := IndiFrequencyi] + TotalFrequencly — 1, j — 1];

Endfor

Endfor

End /* Procedure TotalFrequency */

Figure 5.17:Procedure TotalFrequency

176

5.8.3 Performance and energy optimized designs

In performance optimized design (PO), the tag field is partitioned to obtain the minimum
performance penalty of the address compression. Transmission for any partial match misses
always takes full bus cycles to ensure the minimum miss penalty. The miss penalty for
complete miss is the same as BE. The best partition points are chosen based on the average
miss penalty. We first find out the average miss penalties for all possible combinations of
different partitions. Then the combination which gives the minimum average miss penalty
will be used for partial-match compression. For the narrowest compressed bus we consider,
8-bit bus, the miss penalty in BE is 4 extra bus cycles, which means the complete miss in
partial-match also takes 4 cycles. So the partial match partitions can only take 1, 2, or 3
extra bus cycles for 8-bit compressed bus. For wider buses, the number of extra cycles will
be even less. Therefore the number of different combinations for the partitions is limited and
the best combination can be easily detected.

Similarly, for energy optimized design (EO), we partition the tag field based on the average
bit penalty to obtain the minimum energy consumption. The number of different partitions
including the complete miss is equal to the number of bits in the tag field. If we just simply
check all possible combinations one by one, the time complexity wil!ber n-bit tag
field. We propose the following divide-and-conquer algorithm, minimum average bit penalty
algorithm (MABP), for PM energy optimized design. The time complexity for our MABP
is O(nlog(n)). In MABP, we use recursion to get the minimum average bit penalty and its

corresponding combination of the partitions for sub tag fields first and then use procedure

177

Algorithm MABP(i, j,k, p)

*MABP(i, j,k, p) perform an optimal partitioning of intervai, j] k times to minimize bit penalty.
Let it return the bit penalty for this optimal k-partition and let the positions of the optrpattitions
be returned in integer arrgy]. The bit penalty includes the penalties forlaparts in]i, j] plus the
partition at(j +1). */

Begin

For (i = 0;i < TagLengthi + +) begin

1. b:= MAXFLOAT;

2. k1 := floor(k/2);

3. k2:=ceil(k/2) - 1;

4. TotalFrequency, 1] := IndiFrequencyi];

ol

. For (I = (i+Kkl1);l <= (j —k2);| ++) begin
If (k1=0)thenbl:=1xTotalFrequencly,(l —i+1)];
elsebl := MABP(, (I —1),k1, pl);

If (k2=0)thenb2:+(j+1)*TotalFrequency(j+1),(j+1—1)];
elseb2 := MABP((1 +1), j, k2, p2);

If (k2= 0) then begin
b=bl+b2;
Concatenatey, p1,k1,1, p2,k2);
EndIf
Endfor

Endfor
End /* Algorithm MABP */

Figure 5.18:Algorithm MABP

178

Procedure Concatenatqy, p1,k1,1, p2,k2)

1. For (i=0,i <Kl;i++)
p(i] = p1li;

2. pk1] =1;

3. For (i=0,i <k2;i++)
plk1+i+1] = p2[i];

End /* Procedure Concatenate */

Figure 5.19:Procedure Concatenate

179

Extra Cycle Penalty Variation Across

—_ 588! @d/vd)od
) 508! @orvood &
Z 599! rwIvax/ag
g 5004| @orvorom
5 508! @orvorod
~N .
= o 53881 rvax/ag
) L @rvoroa
a p LS0.0
2 5 %081 @rvooa]
= & 891 wavax/ag
g |BH 08 (@rvooa
g £108 @orvo)od 2
< 5508 wvaxas F
75! ?}%ﬁé @/vo0d
= Lol @o/vo)od ET
L]
% [estss BiE w2
S [E2222 por0E (@/vo)od 2
= SSSsS e @/vood =g
= SRERE "%0pE wivaxag g
S 28339 PE)FE @/vooa B
- RARRREN LLEPFE (a0/v0)0d :§
5 hin = S o EFAES LLTvax/ad
s [<E§§8% 090mem (a0/vD)0d
- O *
= V2P @o/vood O
= . 917 «
2|3 L1Y'| e [TVAX/AS
i PSS'] g (g0/VD)OH
35 B . LIcYpmm= (a0/vD)Od S
CZzgms=| |OrTe——gmyE=s Lw1vex/dd
£g %%% 87y ee———— (1)/VD)Od
SP--vg-vg e SVS'IM (4D)0d
. > <]
9v8’| EmpmmE— (V))Od
186 E— L TVEX/AM
\o w - en [g\} v <
(9) KeUdd IPAD eXIXH pue A)eudd SSIAI

180

Figure 5.20:Extra Cycle Penalty Variation Across Different Compression

Schemes.

On-Chip Energy Ratio Variation Across
Different Compression Schemes

- £96°0 (gD/vD)0d
£ £96°0 (@O/VI)Od «
g £96°0 LLIVIX o
2y 000'T ad
z 5 £96°0 (40/VD)0d
> 5 £96°0 (4D/vD)Od
=2 $96°0 LLIVIX o
g F $00°'T ad
& C; 96°0 (90/vD)0d
Z 8 696°0 (@O/vD)od =
= 696°0 Ivax
010'T Hd
560 (4D/vD)0d
896°0 (@O/vD)Od o
§S6°0 LLIVIX —
ST0'1 ad
006°0 (4D0/VD)0d
W60 (4O/VD)Od o
9€6°0 LL'IVIX —
SSO'T ad
18L°0 (90/vD)0od
S 1O 1O ® ® .
g § SS2g| reso (d)/VI)Od o
s 3 SESE €180 LL'IVIX
W enenen e 8€6°0 AdHd
e o 869°0 (gD/vD)0od
BSESESESESS 19L°0 (4D/vD)Od <
HMOSSSSS .
RSS2 ES £08°0 LLTVIX —
SSRE e g .
2 L= e e| €880 ad
AT 809°0 (gD/VvD)0d
e 9v9'0 (@I/VI)Od
go% § a E § o g)ﬁo LL'IVIX —
M : i Hd
R vl vTS 0 (40/vD)0d
o L6S'0 (@O/vD)0d =
£ = 9ZL0 LLIVIX —
s X @, 0280
> Hama
2 2909
=g N--Neleole) o
SRR R- V-)
8EL0 LL'IVIX
$98°0 ad
S S S (=] S (=] S
(— [—] [—] [—] [—] [—] [—]
a S X g I a3
- o (=] (=] (=] (=] (=)
oney A3xouy diy)-uQ ¥ oney Aeusd Ng

Compressed Bus Width (Bits)

Figure 5.21: On-Chip Energy Variation Across Different Compression

Schemes.

*XBALTI: XOR-BALTI

Off-Chip Energy Ratio Variation Across
Different Compression Schemes

Compressed Bus Width (Bits)

0001 (90/vD)od
o 000°'T (@O/VvD)Od «
< 000°T Ivax
o R 000°1 qAd
= 55 6660 (90/vD)0d
& g 666°0 (@O/vD)Od <
s 6660 LLIVIX «
g o 200'T A4
S ;—5 086°0 (90/vD)0d
= = 8L6°0 (dD/VD)Od o=
S 2 900'T LLIVIX a
S60°'T A4
8L6°0 (90/vD)0d
£96°0 (@O/vD)Od o
866°0 LL'IVIX —
ZAN ! Ad
7560 (g90/vD)0d
956°0 (@O/vD)Od
660 LL'IVIX —
ST'1 a4
. § § § § § £98°0 (g90/vD)od
= SESES 858°0 (dD/VI)Od o
PSS Z 6£60 LLTVIX ~
- SIT'T Ad
08L°0 (g90/vD)0d
ISESESRSRS .
SHSITH v68°0 LL'TVIX
=< bbb TIL0 (E[SI)
q0/vD)od
cb§ § § § § $L9°0 (@O/VD)Od «
25.5@&5 668’ LLIVIX =
3 & 8| 6S0T A4
€19°0 (90/vD)od
20 _ 209°0 (g40/vD)0d =
= ® : LLIVIX
i E . % LT
2383
s =)
SBELEES

LL'TVIX

Figure 5.22: Off-Chip Energy Variation Across Different Compression

Schemes.

8LT'T C ¢!
S @SS S
S oo o
TS XE IS
- S S S S S
oney Asuy dig)-j0 ¥ oney Ajeudd ng

182

*XBALTI: XOR-BALTI

Concatenate to generate the optimal solution for the entire tag field.

Bus Width
8 10 12
P.P* C.* P.P., C. P.P., C.
PO(CA, CB)| [6,14,22,32],[2,3,4,6] | [9,18,30],[2,3,5]| [11,28],[2,4]
[7,14,21,32],[2,3,4,6]
EO(CA,CB) [13,32],[3,5] [12,30],[3,4] | [9,28],[2,4]
*P.P.:Partition points and C.:Cycles

Bus Width
14 16 18
P.P.* C.* P.P., C. P.P., C.
PO(CA, CB) [13,26],[2,3] [15,24],[2,3] | [17,22],[2,3]
EO(CA,CB) [9,26],[2,3] [7,24],[2,3] [5,22],[2,3]
Bus Width
19 20 24 32
P.P., C. P.P., C. P.P., C. P.P., C.
PO(CA, CB)| [18,21],[2,3]| [20],[2] [16],[2] [8].[2]
EO(CA,CB) | [4,21],[2,3] | [3,20],[2,2] [5,16],[2,2] [1,8],[2,2]

Table 5.1:Partition for PM Performance and Energy Optimization.

Our simulations show that both BE and PM are more effective for narrower compressed
buses as far as the energy is concerned. Overall, PM performances much better than BE
in terms of performance and energy. Fig. 5.1 lists the partition points and corresponding
cycles for both performance and energy optimized designs. As shown in Fig. 5.20, the
PM performance and energy optimized compression only cause 0.4% and 0.5% extra cycle
penalty, which is much better than 1.085% when BE is applied. For the 8-bit compressed
bus, the extra cycle penalty is 1.8% for PM performance optimized compression and 4.9%
for BE.

Figs. 5.21 and 5.22 show that 16% and 24% more energy saving for on-chip and off-chip

183

‘Buioeds aip YA SYIPIM shg
passaidwo) jualaylg SS0I0Y Juawaroidw| aduewlouad :£2' ainbi4

Sumeds daim 1B IPLHO NID T
0) PP SI ‘SAPAI NdD) T ‘Adud)e snq udyMm
JuduRAoIduIr dueur10}13d IS YU (T« T

(s11g) WPIN sng passaaduo)

T0¥91

(43

L

96¢°91

1 44 0¢ (118 SI 91 148 (4} 01 8

0 ¥
)
J
8
-C B
-
de
<1l A
2 3 ~
-9 -
> |
I N N N N A = -8 m
= b > > 3 =
- 018
5
= \Nﬁ..m
=}
- PLE
2
ik . sk p— g i M .q_ \WMW
a a a =) w U 2 3 \M

3% [3%) L
2 2 S 2 < 2 E 3 s

[<SE ¢SO TI<vm T¢v0 I<¢0d Tt «I<CO

sunedg dIIA\ YIIM SYIPIAA Sng passdaduio))
JURIRJJI(J SSOIIY JUdUWRAOIdW] DUBWLIOJIdJ

184

(43
J

(4

J

0C

~

‘Buioeds aJIp YA SYIPIM
sng passaldwo) ualayig Sso4oy uonanpay Abiaug diyd-uQ:vz's ainbi4

@.e YIPIA Sng passsadwo)

=
e

14}

=
e

(4}

91
=
-

£31u7 duenede)-JPS O
A319uj] 3daey)) pue ISIeYISI(]

:ueyede)- m—:w

Jouy
ddaey)) :dduejnede)-3urdno)]

noH |

= v
;_;;:;;;_:_;; :::____

o1 8
o SE cl o
0
-0
- ¥°0
- 9°0
- 8°0
Y SLELI nq-ze
%S09°6L ngpz| 1
YBILLYS Nnq-0c| | 1
Y% LEG'SS 1q-61
Y% TLSY'LS nq-81
%YTs16 1Nq-91
%69L°€6 nqg-p1
Y% EV6°S6 Nq-C1
% ESTL6 Nq-01
9%798°86 J1q-8
Suraeg A3I9uj] WINWIXBIA sng

sunedg 1A\ JO 3139(
JUAIDJJI(] SSODY uonerie A oney Asruy dig)-uQ

oney A3xuy digy)-uQ

185

buses can be obtained with PM energy optimized compression than BE. The bit penalty ratio
is the ratio between the bit penalty of the compressed address and the bit penalty of the
original address when the compressed bus is used. Also, the average miss penalty and the
average bit penalty, which are used to decide the best partitions for performance and energy
optimization, correlate very well with the actual performance and the energy dissipation,
respectively.

Similar to the study in Sec. 3.9, we also apply different degrees of wire spacing on top
of PM to improve performance and on-chip energy further. Fig. 5.23 shows that PM with
wire spacing can improve the performance by 2% to 16%. As shown in Fig. 5.24, for 8-bit
compressed bus, up to 98% on-chip energy can be saved using PM with wire spacing, which
is 51% more than using PM itself. Even for 32-bit compressed bus, 68% on-chip energy
reduction can be obtained. On average, 88% on-chip energy can be saved using PM with

wire spacing.

5.9 Conclusions

In this work, we have shown that substantial energy reductions are possible by judiciously
arranging and/or encoding different bit-fields in compressed addresses thus reducing both
self and coupling transitions. Our simulations show that the performance penalty for ad-
dress compression is very modest: about 0.83-0.004% for compressed address bus widths of
14-36 bits. We proposed six different techniques to reduce energy in compressed address

buses and our best scheme results in overall energy reduction of 14.7% for on-chip and 7.0%

186

for off-chip buses compared to transmission of uncompressed addresses. Address compres-
sion alone contributes to only half of this reduction; our proposed techniques contributes the
rest. Also, in many cases where address compression failed to yield energy benefits, our
schemes were successful in reducing energies. With less than 1% performance penalty for
most bus widths and up to 28.8% energy reduction possible by combining address compres-
sion schemes with our proposed transmission techniques, excellent energy efficiencies can
be obtained for on-chip address buses. Further, energy reductions can be obtained by ap-
plying our proposed partial-match compression and wire spacing. With PM, the extra cycle
penalty is only 0.5%, which is much better than 1.085% when BE is applied. On average,
21% and 15% energy savings can be obtained for on-chip and off-chip buses using PM, re-
spectively. In addition, with wire spacing, PM can improve the performance by 2% to 16%

and provide 88% on-chip energy savings on average.

187

Chapter 6

Conclusions

In this dissertation, we have made significant strides in the analysis of memory system com-
pression potential and the design of information pattern aware strategies for nanometer-scale
address buses to improve performance, cost, and power consumption. This was done in the
context of real-world benchmark suites such as SPEC CPU2000 and using execution-driven
simulators like Sun Microsystems’ Shade and SimpleScalar. We have completed the most
comprehensive analysis to date of the potential benefits that address, instruction, and data
compression may Yyield at all levels of the memory system considering a wide variety of fac-
torsin Chapter 2. Then, in Chapter 3, we presented a technique called HOC, in which narrow
bus widths are used for underutilized buses to reduce cost, novel encoding schemes are em-
ployed to reduce power consumption, and concatenation and other methods are applied to
mitigate performance penalty. Next, we exploited information and energy redundancy of

information transmitted on memory system address buses for performance, power, and cost

188

improvements. We presented a detailed analysis of the performance, energy, and cost trade-
offs possible with two cache-based dynamic address compression schemes in Chapter 4 and
a highly energy- and performance-efficient dynamic address compression methodology for

nanometer-scale address buses in Chapter 5.

6.1 Key Results

Below we summarize the main contributions of this dissertation.

e We comprehensively analyzed the redundancy in the information (addresses, instruc-
tions, and data) stored and exchanged between the processor and the memory system
and evaluated the potential of compression in improving performance, power con-
sumption, and cost of the memory system. Analysis on traces obtained with Sun Mi-
crosystems’ Shade simulator simulating SPARC-V9 executables of eight integer and
seven floating-point programs in the SPEC CPU2000 benchmark suite and five pro-
grams from the MediaBench suite and analyzed using Markov entropy models, exist-
ing compression schemes, and CACTI 3.0 and SimplePower timing, power, and area
models showed good potential for compression at all levels of the memory system.
Simulations results also showed that, even in current fabrication technologies, well-
designed compression schemes can provide overall benefits in performance, power,
and cost that outweigh their overheads (extra time, logic, and power for compression
and decompression). These benefits will further grow in future technologies since

the speed, size, and power consumption of logic (which is used to perform compres-

189

sion/decompression) are improving and are projected to improve at a much higher
rate compared to those of interconnect (which is used to communicate information via

buses), both on-chip and, especially, off-chip.

Minimizing the area/cost and power consumption of communication components (ad-
dress, instruction, and data buses and associated hardware like 1/0 pins, pads, and
buffers) is becoming important in modern microprocessors. Currently, utilization of
buses is not taken into account during design of many bus systems. This may lead to
underutilization of many buses during actual operation. We proposed a scheme that
exploits the underutilization of address buses to result in a cost-effective and energy-
efficient bus system design. This is accomplished by using buses of narrow width,
energy-efficient transmission formats, and wire spacing. On average, 16% on-chip en-
ergy reduction can be obtained using our best transmission technique, T6, and off-chip
energy can be improved by 45% with T4 compared to the baseline transmission for-
mat. HOC with wire spacing results in 61% reduction of the wire delay, up to 0.8% to

15% performance improvement, and 60% on-chip energy savings.

Dynamic address compression schemes that exploit address locality can help reduce
both address bus energy and cost simultaneously with only a small performance penalty.
We investigated two such schemes and determined their optimal parameters that result
in the highest area/cost reductions and least performance penalty for various address

buses (both on- and off-chip) in current systems. For addresses compressed with these

190

schemes, we studied energy reduction of buses in current and future nanometer tech-
nology nodes. Results show that using address compression will result in only small
performance overheads (less than 1% for a 38-bit bus to 14 bits) and reduce bus energy

dissipation by as much as 13% when applied to on-chip buses in current technologies.

To realize energy-efficient buses in current nanometer-scale technologies, techniques
like compression or encoding that exploit information redundancy have been explored.
However, available compression techniques for buses do not always ensure energy-
efficient transmission of compressed information. We presented various techniques
that can be used with existing compression schemes for buses to ensure the best
energy-efficiency for compressed information transmission. Our best scheme, applied
to a stream of 38-bit addresses issued in a typical microprocessor, yields about 14.3%
energy reduction on the average across a wide range of compressed bus widths rang-
ing from 8 to 32 bits. Our proposed techniques especially perform better (up to 27.4%
energy reduction is obtained) for narrower bus widths in the range 8-16 bits. Further
energy reductions can be obtained by applying our proposed partial-match compres-
sion and wire spacing. With PM, extra cycle penalty is only 0.5%, which is much
better than 1.085% when BE is applied. On average, 21% and 15% energy savings can
be obtained for on-chip and off-chip buses using PM, respectively. In addition, with
wire spacing, PM can improve performance by 2% to 16% and provide 88% on-chip

energy savings on average.

191

6.2 Future Work

In the future, we intend to design compression schemes for instruction and data buses
by taking into account characteristics of different instruction formats and fields and data
types, like character, integer, and floating point. Currently, the schemes developed are meant
mainly for communication components, especially, nanometer-scale address buses. We plan
to extend and apply most ideas to storage components, like caches, TLB, and main memory.

The increased complexity of computing systems not only involves challenges to system
design, but also to testability. Test data volume is increasing dramatically as technology
iS moving into nanometer regime, which makes testing time longer, consumes more test-
ing power, and increases testing cost [78, 54]. Testing is becoming a critical bottleneck in
improving time-to-market. Another fruitful research direction will be to explore test data
compression to reduce size of test data and minimize its effect on testing time, power con-

sumption, and cost.

192

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Advanced RISC Machines Ltd (ARMAN Introduction to ThumfMarch 1995. Avail-

able at: http://www.arm.com.

Y. Aghaghiri, F. Fallah, and M. Pedram. Irredundant Address Bus Encoding for Low
Power. InProceedings of International Symposium on Low Power Electronics and
Design pages 322-327, August 2001.

K. Basu, A. Choudhary, J. Pisharath, and M. Kandemir. Power Protocol: Reducing
Power Dissipation on Off-Chip Data Buses. Rroceedings of the Annual ACM/IEEE
International Symposium on Microarchitectupgages 345-355, November 2002.

J.C. Becker, A. Park, and M. Farrens. An Analysis of the Information Content of
Address Reference Streams. Proceedings of the International Conference on Mi-
croarchitecture pages 19—-24, November 1991.

L. Benini, G. De Micheli, E. Macii, and M. Poncino. Selective Instruction Compression
for Memory Energy Reduction in Embedded Systemsroceedings of International
Symposium on Low Power Electronics and Desfgages 206—211, August 1999.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano. Asymptotic Zero-
Transition Activity Encoding for Address Busses in Low-power Microprocessor-based
Systems. InProceedings of Great Lakes Symposium on Ybh&ges 77-82, March
1997.

Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New Paradigm of Predictive

MOSFET and Interconnect Modeling for Early Circuit Design.Pioceedings of the

193

[8]

[9]

[10]

[11]

[12]

[13]

[14]

IEEE Custom Integrated Circuits Conferenpgages 201-204, June 2000.

W.-C. Cheng and M. Pedram. Memory Bus Encoding for Low-power: A Tutorial. In
Proceedings of International Symposium on Quality Electronic Degigges 199-204,
March 2001.

W.-C. Cheng and M. Pedram. Power Optimal Encoding for a DRAM Address Bus.
IEEE Transactions on VLSI Systeri§(2):109-118, April 2002.

D. Citron. Exploiting Low Entropy to Reduce Wire DelayComputer Architecture
Letters 3, January 2004.

D. Citron and L. Rudolph. Creating a Wider Bus using Caching TechniqueBron
ceedings of International Symposium on High Performance Computer Architecture
pages 90-99, January 1995.

B. Cmelik and D. Keppel. SHADE: A Fast Instruction-set Simulator for Execution
Profiling. ACM SIGMETRICS Performance Evaluation Reyi2®(1):128-137, May
1994.

J. Cong, L. He, C.-K. Koh, and Z. Pan. Global Interconnect Size and Spacing with Con-
sideration of Coupling Capacitance. Pnoceedings of IEEE International Conference
on Computer-Aided Desigpages 628—633, November 1997.

T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye. Instruction
Fetch Mechanisms for VLIW Architectures with Compressed EncodingBrdoeed-

ings of the Annual Symposium on Computer Architectpages 201-211, December

1996.

194

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K.D. Cooper and N. MciIntosh. Enhanced Code Compression for Embedded RISC Pro-
cessors. IfProceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementatippages 139-149, May 1999.

Standard Performance Evaluation Council. SPEC CPU2000 Benchmark Suite Verl.2.
http://www.specbench.org/cpu2000, 2000.

S. Debray, W. Evans, R. Muth, and B. de Sutter. Compiler Techniques for Code Com-
paction.Transactions on Programming Languages and Syst2&{2):378—-415, March
2000.

R. Desikan, D.C Burger, S.W. Keckler, and T.M. Austin. Sim-alpha: a Validated,
Execution-Driven Alpha 21264 Simulator. Technical Report TR-01-23, The University
of Texas at Austin, Department of Computer Sciences, 2001.

J. Ernst, W. Evans, C.W. Fraser, S. Lucco, and T.A. Proebsting. Code Compression.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementatigrpages 358-365, June 1997.

M. Farrens and A. Park. Dynamic Base Register Caching: A Technique for Reducing
Address Bus Width. IfProceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementatipages 128-137, May 1991.

P.A. Franaszek and J.T. Robinson. Design and Analysis of Internal Organizations for
Compressed Random Access Memories. Technical Report IBM Research Report RC
21146(94535)200CT98, IBM Research Division, T.J. Watson Research Center, York-

town Heights, NY, October 1998.

195

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C.W. Fraser, E.W. Myers, and A.L. Wendt. Analyzing and Compressing Assembly
Code.SIGPLAN Noticesl9(6):117-121, June 1984,

M. Game and A. Booker. Codepack[tm]: Code Compression for
PowerPC Processors. IBM White Paper available at: http://www-
3.ibm.com/chips/techlib/techlib.nsf/products/CodePack, May 2000.

D.W. Hammerstrom and E.S. Davidson. Information Content of CPU Memory Refer-
encing Behavior. IfProceedings of the 4th Annual Symposium on Computer Architec-
ture (ISCA-4) pages 184-192, march 1977.

J. Henkel and H. Lekatsas. A2BC: Adaptive Address Bus Coding for Low-power Deep
Sub-micron Designs. IRroceedings of Annual ACM/IEEE Design Automation Con-
ference pages 744—749, June 2001.

J.L. Hennessy and D.A. Pattersc@omputer Architecture: A Quantitative Approach,
Third edition Morgan Kaufmann Publishers Inc., 2003.

J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel. A Code Compres-
sion System Based on Pipelined InterpreterSoftware Practice and Experience
29(11):1005-1023, September 1999.

ITRS. International Technology Roadmap for Semiconductors, 2001 edition, 2001.

I. Kadayif and M. Kandemir. Instruction Compression and Encoding for Low-
power Systems. IProceedings of the IEEE International ASIC/SOC Conference
(ASIC/SOC’02)pages 301-305, September 2002.

K. Kant and R. lyer. Design and Performance of Compressed Interconnects for High

196

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Performance Servers. Rroceedings of International Conference on Computer De-
sign pages 164-169, October 2003.

H. Kaul, D. Sylvester, and D. Blaauw. Issues in Crosstalk: Active Shielding of Rlc
Global Interconnects. IRroceedings of ACM/IEEE International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systemges 98—104, 2002.

T.M. Kemp, R.K. Montoye, J.D. Harper, J.D. Palmer, and D.J. Auerbach. A Decom-
pression Core for PowerPGBM Journal of Research and Developme#2(6):807—
811, November 1998.

K.-Y. Khoo and A.N. Willson. Charge Recovery on a Databus. Pmceedings of
International Symposium on Low Power Electronics and Deggges 185-189, 1995.
K.W. Kim, K.H. Back, N. Shanbhag, C.L. Liu, and S.M. Kang. Coupling-driven Signal
Encoding Scheme for Low-power Interface Design.Phoceedings of IEEE Interna-
tional Conference on Computer-Aided Desigages 318—-321, November 2000.

D. Kirovski, J. Kin, and W.H. Mangione-Smith. Procedure Based Program Compres-
sion. InProceedings of the Annual ACM/IEEE International Symposium on Microar-
chitecture pages 204—-213, December 1997.

K.D. Kissell. MIPS16: High-density MIPS for the Embedded Market.
http://www.mips.com/Documentation/MIPS16whitepaper.pdf, 1997.

M. Kjelso, M. Gooch, and S. Jones. Empirical Study of Memory-data: Character-
istics and CompressibilitylEE Proceedings on Computers and Digital Techniques

145(1):63—-67, January 1998.

197

[38] M. Kozuch and A. Wolfe. Compression of Embedded System Progranirobeed-
ings of International Conference on Computer Desjggiges 270-277, October 1994.

[39] T. Lang, E. Musoll, and J. Cortadella. Extension of the Working-zone Encoding
Method to Reduce the Energy on the Microprocessor Data Bus?rdoeedings of
International Conference on Computer Desigages 414-419, October 1998.

[40] C.Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communicatons SystemsPréceedings of the
Annual Symposium on Computer Architectyrages 330-335, December 1997.

[41] J.-S. Lee, W.-K. Hong, and S.-D. Kim. Design and Evaluation of a Selective Com-
pressed Memory System. FProceedings of International Conference on Computer
Design pages 184-191, October 1999.

[42] C. Lefurgy and T. Mudge. Code Compression for DSP. Technical Report CSE-TR-
380-98, EECS Department, University of Michigan, Ann Arbor, Ml, 1998.

[43] H. Lekatsas, J. Henkel, and W. Wolf. Code Compression for Low Power Embedded
System Design. liProceedings of Annual ACM/IEEE Design Automation Conference
pages 294-299, June 2000.

[44] H. Lekatsas and W. Wolf. Random Access Decompression using Binary Arithmetic
Coding. InProdeedings of Data Compression Conferengages 306—315, March
1999.

[45] H. Lekatsas and W. Wolf. SAMC: A Code Compression Algorithm for Embedded Pro-

cessorslEEE Transactions on Computer-aided Desi8(12):1689-1701, December

198

[46]

[47]

[48]

[49]

[50]

[51]

[52]

1999.

L. Lev and P. Chao. Down to the wire: Requirements for Nanometer Design Imple-
mentation. White Paper, Cadence Design Systems Inc., 2002.

S.Y. Liao, S. Devadas, and K. Keutzer. Code Density Optimization for Embedded DSP
Processors Using Data Compression TechniquesPrdeeedings of Conference on
Advanced Research in VL $lages 393-399, March 1995.

J. Liu, N.R. Mahapatra, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. Memory
System Compression and Its Benefits.Piioceedings of the 15th Annual IEEE Inter-
national ASIC/SOC Conferengeages 41-45, September 2002.

N.R. Mahapatra, J. Liu, and K. Sundaresan. Hardware-Only Compression of Under-
utilized Address Buses: Design and Performance, Power Consumption and Cost Anal-
ysis. InProceedings of IEEE International Conference on Computer Degigges
234-239, October 2003.

N.R. Mahapatra, J. Liu, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. The Potential
of Compression to Improve Memory System Performance, Power Consumption, and
Cost. InProceedings of IEEE Performance, Computing and Communications Confer-
ence pages 343-350, April 2003.

E. Musoll, T. Lang, and J. Cortadella. Working-zone Encoding for Reducing the Energy
in Microprocessor Address Busd&EE Transactions on VLSI Syster6§4):568-572,
December 1998.

A. Park and M. Farrens. Address Compression through Base Register Caching. In

199

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture
pages 193-199, November 1990.

J.M. Rabaey, A. Chandrakasan, and B. Nikolidigital Integrated Circuits Prentice

Hall Inc., 2002.

J. Rajski and J. Tyszer. Test Data Compression and Compaction for Embedded Test
of Nanometer Technology Designs. Rroceedings of International Conference on
Computer Designpages 331-336, 2003.

Y. Shin and K. Choi. Narrow Bus Encoding for Low Power System®roceedings of

Asia and South Pacific Design Automation Conferepeges 217-220, January 2000.

P. Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated Cache Cycle Timing, Power,
and Area Model. Technical Report WRL Research Report 2001/2, Compag Western
Research Laboratory, August 2001.

K. Skadron, P.S. Ahuja, M. Martonosi, and D.W. Clark. Selecting a Single, Represen-
tative Sample for Accurate Simulation of SPECint BenchmalkEE Transactions on
Computers48(11):1260-1281, November 1999.

P.P. Sotiriadis and A. Chandrakasan. Low Power Bus Coding Techniques Considering
Inter-wire Capacitances. IRroceedings of Custom Integrated Circuits Conference
pages 414-419, May 2000.

P.P. Sotiriadis and A. Chandrakasan. A Bus Energy Model For Deep Sub-Micron In-
terconnectsIEEE Transactions on VLSI Systeri§(3):341-350, June 2002.

M.R. Stan and W.P. Burleson. Bus-invert Coding for Low-power IIBEE Transac-

200

[61]

[62]

[63]

[64]

[65]

[66]

[67]

tions on VLSI System3:49-58, March 1995.

M.R. Stan and W.P. Burleson. Low-power Encodings for Global Communication in
CMOS VLSI. IEEE Transactions on VLSI SysterBs144—-455, December 1997.

C.L. Su, C.Y. Tsui, and A.M. Despain. Low Power Architecture Design and Compila-
tion Techniques for High-performance Processors. Technical Report ACAL-TR-94-01,
Advanced Computer Architecture Laboratory, University of Southern California, 1994.
D.C. Suresh, B. Agarwal, J. Yang, W. Najjar, and L. Bhuyan. Power Efficient Tech-
niques for Off-Chip Data Buses. Proceedings of Workshop on Compiler and Archi-
tecture Support for Embedded Systepagjes 267-275, October 2003.

R. B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. Smith, M.E. Wa-
zlowski, and P.M. Bland. IBM Memory eXpansion Technology (MXTBM Journal

of Research and Developmea5(2):271-285, March 2001.

L. Villa, M. Yang, and K. Asanovic. Dynamic Zero Compression for Cache Energy
Reduction. InProceedings of the Annual ACM/IEEE International Symposium on Mi-
croarchitecture pages 214-220, December 2000.

J.L. Wang and R.W. Quong. The Feasibility of Using Compression to Increase Memory
System Performance. Iaroceedings of International Workshop on Modeling, Anal-
ysis and Simulation of Computer and Telecommunications Syspamges 107-113,
January 1994.

D.L. Weaver and T. Germond, editor3he SPARC Architecture Manual, Version 9

Prentice Hall, 2000.

201

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

V. Wen, M. Whitney, Y. Patel, and J.D. Kubiotowicz. Exploiting Prediction to Reduce
Power on Buses. IRroceedings of International Symposium on High Performance
Computer Architecturgpages 2—-13, February 2004.

Wayne Wolf. Computers as Components: Principles of Embedded Computing System
Design Morgan Kaufmann Publishers Inc., 2001.

A. Wolfe and A. Channin. Executing Compressed Programs on an Embedded RISC
Architecture. InProceedings of the Annual Symposium on Computer Architecture
pages 81-91, December 1992.

Y. Xie, W. Wolf, and H. Lekatsas. Code Compression for VLIW using Variable-to-
fixed Coding. InProceedings of the International Symposium on System Synthesis
pages 138-143, October 2002.

J. Yang, Y. Zhang, and R. Gupta. Frequent Value Compression in Data Caches. In
Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture
pages 258-265, November 2000.

W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J.Irwin. The Design and Use of Simple-
power: a Cycle-accurate Energy Estimation TooPtaceedings of Annual ACM/IEEE
Design Automation Conferengeages 340-345, June 2000.

Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa. An Object Code
Compression Approach to Embedded ProcessoiRrdoeedings of International Sym-
posium on Low Power Electronics and Desigages 265—-268, August 1997.

H. Zhang and J.Rabaey. Low-Swing Interconnect Interface Circuit®rdneedings

202

of International Symposium on Low Power Electronics and Degigiges 161-166,
August 1998.

[76] Y. Zhang, R. Y. Chen, W. Ye, and M.J.lIrwin. System Level Interconnect Power Mod-
eling. InIEEE International ASIC/SoC Conferengmges 289-293, September 1998.

[77] Y. Zhang, J. Lach, K. Skadron, and M.R. Stan. Odd/even Bus Invert with Two-Phase
Transfer for Buses with Coupling. lroceedings of International Symposium on Low
Power Electronics and Desigpages 80-83, August 2002.

[78] Y. Zorian, S. Dey, and M. Rodgers. Test of Future System-on-chipBrdoeedings of

IEEE International Conference on Computer-Aided Despages 392-398, 2000.

203

