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ABSTRACT
Several centrality measures were introduced to identify es-
sential components and compute components’ importance
in networks. Majority of these centrality measures are dom-
inated by components’ degree due to their nature of looking
at networks’ topology. We propose a novel essential com-
ponent identification model, bridging centrality, based on
information flow and topological locality in scale-free net-
works. Bridging centrality provides an entirely new way
of scrutinizing network structures and measuring compo-
nents’ importance. We apply bridging centrality on real
world networks, including one simulated network, two bio-
logical networks, two social networks, and one web network,
and show that the nodes distinguished by bridging centrality
are well located on the connecting positions between highly
connected regions through analyzing the clustering coeffi-
cient and average path length of those networks. Bridging
centrality can discriminate bridging nodes, the nodes with
more information flowed through them and locations be-
tween highly connected regions, while other centrality mea-
sures can not.

Categories and Subject Descriptors
[Network Analysis]: Network metrics, Network compo-
nent importance metrics, Essential component analysis

General Terms
Degree, shortest path, betweenness, clustering coefficient,
average path length, singleton
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1. INTRODUCTION
Many real world systems, e.g., internet, World Wide Web
(WWW), social systems, biological systems, etc., can be de-
scribed as complex networks, which are structured as a set
of nodes and a set of edges connecting the nodes. Scale-free
network[4] is the most popular and emerging form of net-
work in these real world network systems. Most of these
real world networks have been proved to follow some topo-
logical statistical features, i.e., features of scale-free network,
such as power law degree distribution, small world property,
and high modularity [2, 3, 4, 5]. Power law degree distri-
bution depicts the probability of finding a highly connected
node decreases exponentially with its own degree, which is
the number of edges incident on the node. In other words,
there are many low degree nodes, and only a small number
of nodes have high degree. The second phenomenon, small
world property, describes that the average distance between
nodes in a network is relatively shorter than other network
types, e.g., random networks of the same size. Namely,
any node can be reached within small number of consec-
utive edges from a node in a network. A module refers to a
densely connected, functionally or physically, group of nodes
in a network. For the last distinct and the most interesting
property, these real world networks have high modularity
which indicates that high clustering is one of dominating
characteristics of these networks.

Over the past few years, empirical and theoretical studies
of networks have been one of the most popular subjects of
recent researches in many areas including technological, so-
cial, and biological fields. Network theories have been ap-
plied with good success to these real world systems, and
many centrality indices, measurements of the importance of
the components in a network, have been introduced [6, 9,
10, 16, 7, 18]. While these centrality indices have proved
that they made outstanding achievements in the analysis
and understanding of the roles of nodes in a network, ma-
jority of these existing centrality indices focuses only on the
extent how much nodes are well located on central positions
or play central roles from the stand point of topology and
information flow. These existing centrality measures can not
help being considerably dominated by nodes’ degree due to
their nature of computing components’ importance. Even



though these approaches are very good at identifying cen-
tral components, i.e., central components from any central-
ity viewpoint, of a network or of a module, they concentrate
only on central components and overlook another essential
topological aspect in networks.

In this research, we move the focus of the network analy-
sis from the directions of identifying central nodes to an-
other entirely new, fresh, and important direction. From
our deeper observation of the high modularity property of
scale-free networks, we claim that there should be “bridg-
ing” nodes that are located between modules, and we found
that there exist “bridging” nodes in real world scale-free net-
works due to their high modularity phenomenon. So, we also
claim that these bridging nodes, which bridge densely con-
nected regions, should be attractive and important essential
components in a network. We introduce a novel centrality
metric, bridging centrality, that successfully identifies the
bridging nodes locating between densely connected regions,
i.e. modules, using high modularity or high clustering prop-
erty which is one of the most important property of scale-free
networks. Experiments on several real world network sys-
tems are performed to demonstrate the effectiveness of our
metric.

Bridging centrality has many potential applications in sev-
eral areas. First, it can be used to break up modules in
a network for clustering purpose. Functional modules or
physical modules in biological networks or sub community
structures in social and technological networks can be de-
tected using the bridging nodes chosen by bridging central-
ity. Second, it also can be used to identify the most critical
points interrupting the information flow in a network for
network protection and robustness improvement purposes
for networks. Third, in biological applications, the bridging
centrality can be used to locate the key proteins, which are
the connecting nodes among functional modules.

2. METHOD
2.1 Terminology and Representation
Real world systems can be represented using graph theoretic
methods. The approach presented in this paper focuses on
undirected graphs. An undirected graph G = (V, E) consists
of a set V of nodes or vertices and a set E of edges, E ⊆ V×V.
An edge e(i,j) connects two nodes i and j, e(i,j) ∈ E.

The neighbors N(i) of node i are defined to be a set of di-
rectly connected nodes to node i. The degree d(i) of a node
i is the number of the edges connected to node i. A path
is defined as a sequence of nodes (n1,...,nk) such that from
each of its nodes there is an edge to the successor node.
The length of a path is the number of edges in its node se-
quence. A shortest path between two nodes, i and j, is a
minimal length path between them. The distance between
two nodes, i and j, is the length of its shortest path. The
clustering coefficient Cv for a node v is the proportion of
links between the nodes within its neighbourhood divided by
the number of links that could possibly exist between them,

Cv= 2|{e(i,j)}|
d(v)(d(v)−1)

: i,j∈ N(v), e(i,j)∈E [19]. In other words,

|{e(i, j)}| gives the number of triangles that go through node
v, whereas d(v)(d(v)− 1)/2 is the total number of triangles
that could pass through node v. Thus, clustering coefficient

of node v indicates how the neighbors of node v are well
connected each other. The clustering coefficient of a graph
is the average of the clustering coefficients of all nodes in the
graph. The average path length of a graph is the average of
the shortest paths between all pairs of nodes in the graph.

2.2 Bridging Centrality
A bridging node is a node lying between modules, i.e., a
node connecting densely connected components in a graph.
The bridging nodes in a graph are identified on the basis
of their high value of bridging centrality relative to other
nodes on the same graph. The bridging centrality of a node
is the product of the betweenness centrality CB [10] and the
bridging coefficient (BC), which measures the global and
local features of a node, respectively.

Specifically, the bridging centrality CR(v) for node v of in-
terest, is defined by:

CR(v) = BC(v)× CB(v) (1)

The betweenness centrality is a measure of the global impor-
tance of a node that assesses the proportion of the shortest
paths between all node pairs that pass through the node of
interest. The betweenness centrality, CB(v), for a node v of
interest is defined by:

CB(v) =
X

s6=v 6=t
s,v,t∈V

ρst(v)

ρst
(2)

In the above equation, ρst is the number of shortest paths
from node s to t and ρst(v) the number of shortest paths
from s to t that pass through the node v. The higher CB(v),
more number of shortest paths between all node pairs pass
through the node v. So node v is more likely to be located
on the shortest paths between all node pairs in the network,
i.e., more information travel through the node v.

The bridging coefficient of a node determines the extent how
well the node is located between high degree nodes. The
bridging coefficient of a node v is defined:

BC(v) =
d(v)−1P

i∈N(v)
1

d(i)

(3)

where d(v) is the degree of node v, and N(v) is the set of
neighbors of node v. The bridging coefficient assesses the lo-
cal bridging characteristics in the neighborhood. The bridg-
ing coefficient understands a network as a simple electrical
circuit. Intuitively, there should be more congestion on the
smaller degree nodes if an unit electrical current arrives on
a node since the smaller degree nodes have lesser number of
outlets than the bigger degree nodes have. So, if we consider
the reciprocal of the degree of a node as the “resistance” of
the node, the bridging coefficient can be viewed as the ratio
of the resistance of a node to the sum of the resistance of the
neighbors. Critical bridging nodes, typically representing
rate limiting points in the network and because they con-
nect its densely connected regions, have high “resistance.”
Thus, higher CR(v) signifies that more information flows
through node v, i.e., higher betweenness centrality(CB(v)),
and more resistance on node v, i.e., higher bridging coeffi-
cient(BC(v)), by bridging densely connected regions.
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Figure 1: A small synthetic network example. Top six high
bridging score nodes are colored.

Node Degree CB BC CR

E 2 0.53333 0.85714 0.45713
B 2 0.15555 0.85714 0.13333
D 2 0.15555 0.85714 0.13333
F 3 0.47777 0.22222 0.10617
A 4 0.65555 0.10000 0.06555
J 3 0.21111 0.16666 0.03518

Table 1: Top six centrality values of Figure 1, including
Betweenness(CB), bridging coefficient(BC), and bridging
centrality(CR).

Figure 1 and Table 1 clearly illustrates the essence of bridg-
ing centrality. Although node A has the highest degree and
betweenness value, nodes E, B, and D have much higher
bridging centrality values since node A is located on the
center of a module not on a bridge which results in the
lowest bridging coefficient value. In other words, far more
number of shortest paths goes through node A than other
three nodes, but nodes E, B, and D position on bridges
much better. So, nodes E, B, and D have higher bridg-
ing centrality values since they are on the bridges between
modules which leads much higher bridging coefficient values
than node A. Betweenness centrality decides only the extent
how much important the node of interest is from information
flow standpoint, and it does not consider the topological lo-
cations of the node. On the other hand, nodes B and D have
the same bridging coefficient value with node E, but nodes B
and D have much less betweenness centrality values since far
more number of shortest paths passes through node E than
through nodes B and D. Even though nodes E, B, and D are
located on similar local topological positions, i.e., similar lo-
cal topological surroundings, node E is taking a much more
important location than nodes B and D in the information
flow viewpoint. Bridging coefficient measures only the ex-
tent how well the node is located between highly connected
regions, and it does not deliberate the node’s importance
from information flow standpoint. Without a doubt, we can
figure out that node E is taking a better bridging position
than nodes B and D are in Figure 1. Bridging nodes should
be positioned between modules and also located on impor-
tant positions in information flow standpoint. So, bridging
centrality combines these two measurements, betweenness
centrality and bridging coefficient, since none of these two
indices can differentiate the bridging nodes alone, as we saw
in the above. So bridging centrality combines global and lo-
cal features, betweenness centrality and bridging coefficient
respectively, of the node not focusing only on one topologi-
cal factor like other centrality indices do, and discriminates

A

B

C

D

E
F G

H

I

J

K

L

M

N

OP

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF
AG

AH

AI

AJ

Figure 2: A synthetic network with 36 nodes and 46 edges.
The nodes with the highest 0-10th percentile of values for
the bridging centrality are highlighted in black circles, the
nodes with the 10th-25th percentiles of bridging centrality
are highlighted in gray circles. The letters are node labels.

the bridging nodes which are located on the critical posi-
tions for information flow viewpoint and also are positioned
on the bridges.

3. RESULTS
The focus of this research and performance analysis is mainly
on the top 25% high bridging centrality score components
in all examples, since the significance and the interest are
rapidly reduced below top 25 percentile. Furthermore, bridg-
ing centrality values and the range of the bridging nodes
can be arbitrary according to the network topology dealt
with. Empirical studies on several real world network sys-
tems made us define “bridging nodes” as the top 25 per-
centile.

3.1 Application on Simulated Data
To obtain a preliminary assessment of the underlying net-
work characteristics identified by the bridging centrality, we
applied the metric to a synthetic network consisting of 36
nodes and 46 edges shown in Figure 2. The synthetic net-
work investigated contains key elements such as hub nodes,
peripheral nodes, cycles and bridging nodes that are com-
monly found in biological networks. The overall degree dis-
tribution followed a power law distribution but the overall
size was kept small so that any patterns present could be
easily detected by visual inspection.

In Figure 2, we have highlighted the nodes in the highest
0-10th percentiles of bridging centrality values with black-
filled circles whereas nodes in the highest 10th-25th per-
centiles of bridging centrality values are shown in gray-filled
circles. Visual inspection of the synthetic network reveals
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Figure 3: The schematic of undirected graph network model
for the p53 protein with 82 nodes and 106 edges. The nodes
with the highest 0-10th percentile of values for the bridging
centrality are highlighted in black circles; the nodes with the
10th-25th percentiles of bridging centrality are highlighted
in gray circles. The labels are abbreviations of gene names.

that the bridging centrality values of peripheral nodes (e.g.,
D, Y, Z, AA, AB, AI, AJ), hub nodes (e.g., A, AF, X) and
nodes in simple cycles (e.g., A, B, C; M, N, O) do not occur
in the highest percentiles of bridging centrality. The highest
values of bridging centrality occur in the nodes that connect
the modules and highly connected regions of the network.

3.2 Application on the p53 Network
Based on the encouraging performance of the bridging cen-
trality metric on the synthetic network, we evaluated its
performance on a simple undirected graph network model
for the p53 related regulatory network[13]. The p53 protein
is a critical tumor suppressor molecule and because it is of-
ten mutated in many human tumors, its interactions could
potentially provide targets for anti-cancer drugs.

Figure 3 is the schematic of the undirected graph model for
the p53 regulatory network. Similar to Figure 2, the nodes
with the highest top 10 percentile bridging centrality values
are shown with the black circles, whereas top 25 percentile
with the grey circles. We can easily validate that the dis-
tinguished bridging nodes (e.g. Mdm2, GRB2, SOS, CDK6,
EIF4E, TGFB1, H-RAS, N-RAS) are clearly standing on
the boundary between modules.

3.3 Application on the Yeast Metabolic Net-
work

In the next step, we extended the promising results obtained
with the simple p53 regulatory network model to the undi-
rected yeast metabolic network[17]. The yeast metabolic

Figure 4: The yeast metabolic network with 359 nodes and
435 edges. The nodes with the highest 0-10th percentile of
values for the bridging centrality are highlighted in black
circles; the nodes with the 10th-25th percentiles of bridging
centrality are highlighted in gray circles.

network is relatively well modularized and clustered accord-
ing to their cellular functions. Figure 4 shows that bridging
centrality successfully identifies the bridging nodes and the
nodes lying on the borders of modules. Importantly, the
majority of its key bridging nodes can be readily identified
by visual inspection.

3.4 Application on Social Networks
Encouraged by the outstanding performance of bridging cen-
trality metric on the biological networks, we shift gear to so-
cial networks, an academic collaboration network[15] and a
character relationship network in a novel, Les miserable[15].
Figures 5 and 6 exhibits the bridging centrality results on
the academic collaboration network in physics research and
the character network of Les Miserable, respectively. As
can be seen in Figures 5 and 6, the bridging nodes are well
positioned on the road between modules, even though the
networks are much more complex and highly cross connected
in the core area than the previous examples. Furthermore,
it is obviously shown that network information should pass
through the highlighted bridging nodes if it tries to move
from a module to a module.

3.5 Application on a Web Network
One of the most emerging real world networks is a web net-
work, i.e., networks that connect web pages in World Wide
Web. Figure 7 visualizes a small section web network[1][15].
This network is simple but highly modular with many pe-



Figure 5: The academic collaboration network in physics
research with 142 nodes and 340 edges. The nodes with the
highest 0-10th percentile of values for the bridging centrality
are highlighted in black circles; the nodes with the 10th-
25th percentiles of bridging centrality are highlighted in gray
circles.

Figure 6: The character network of Les Miserable with 77
nodes and 254 edges. The nodes with the highest 0-10th
percentile of values for the bridging centrality are highlighted
in black circles; the nodes with the 10th-25th percentiles of
bridging centrality are highlighted in gray circles.

Figure 7: The web network with 180 nodes and 228 edges.
The nodes with the highest 0-10th percentile of values for
the bridging centrality are highlighted in black circles; the
nodes with the 10th-25th percentiles of bridging centrality
are highlighted in gray circles.

ripheral nodes, and importantly, the majority of its key
bridging nodes can be readily identified by visual inspec-
tion. Most of the top 10 percentile scored nodes resides on
the bridging positions and other relatively low scored nodes,
which are between 10% and 25% and colored in grey, also
well positioned on the boundary of modules. We can clearly
differentiate modules by inspecting the bridging nodes as
frontier of modules.

3.6 Theoretical Analysis on Yeast Metabolic
Network

The main objective of this study is to analyze the potential
of bridging centrality score to select the nodes that position
on true bridging locations. We use the yeast metabolic net-
work for further analyses since it has better scale-free net-
work properties, e.g., power law distribution, high modular-
ity, than other examples in the above and also has moderate
size that enables us to observe the performances precisely.
In order to investigate the topological locality of the bridg-
ing nodes picked up by bridging centrality in networks, we
analyzed and compared the behaviors of the clustering co-
efficient, the average path length, and the number of single-
tons occurrence with other two famous centrality measures.

Figure 8(a) compares the behaviors of the clustering coef-
ficient of the network in the consequence of consecutive re-
movals of top 10 percentile high centrality score nodes for
three centrality measures, degree centrality(or node degree),
betweenness centrality (BW), and bridging centrality (BR).
The clustering coefficient behaviors for these three centrali-
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Figure 8: Analysis on the Yeast Metabolic Network. (a)Average Path Length Changes, (b)Clustering Coefficient changes, (c)
Singleton Changes. Changes of the clustering coefficient, average path length, number of singletons followed by the consecutive
top 10 percentile high score node removals for three centrality measures(degree, betweenness(BW), bridging(BR)) .

ties explain some interesting and important features of the
nodes picked by these three different centrality measures.
For more clear understanding of the clustering coefficient
behaviors, one needs to observe the behaviors together with
the changes of number of singletons simultaneously. Figure
8(c) shows the changes of the number of singletons produced
by the same node removals. The removals by the other two
centrality indices, degree centrality and betweenness cen-
trality, did not show monotonic behaviors of the cluster-
ing coefficients, and they rather considerably decreased the
clustering coefficient about 20%. Furthermore, they pro-
duced many more singletons than bridging centrality did in
the same intervals. Needless to say, the nodes caught by
the other two centrality indices are located on the center of
modules and the removals of those nodes damaged the mod-
ularity of the network and mass-produced singletons. How-
ever, as we removed the highest bridging centrality score
nodes one by one, the clustering coefficient of the network
was increased about 10% constantly for almost all intervals
while only one singleton was produced in the same interval.
In other words, cutting the high bridging centrality nodes
enhanced the modularity of the network without producing
many singletons, i.e., the nodes picked up by bridging cen-
trality are located between modules neither on the center of
modules nor on the peripheral of the network.

As the second evidence of the bridging centrality’s superior-
ity on targeting the bridging nodes, we observed the topolog-
ical properties of the bridging nodes discriminated by bridg-
ing centrality from the alternative paths availability and av-
erage path length point of view. Figure 8(b) describes the
changes of the average path length followed by the removals
of top 10 percentile high centrality score nodes. Increment of
the average path length by a node removal means that there
are some node isolations from the other part of the network
or there are some alternative paths but longer than the re-
moved path. The changes of the average path lengths should
be also scrutinized along with the changes of the number of
singletons, Figure 8(c), to comprehend more precisely. The
changes of the average path length for the other two cen-

trality indices, degree centrality and betweenness centrality,
were increased more than the case of bridging centrality.
But it is clear that their increment behaviors are caused by
the mass-production of singletons in the same interval as
can be seen in Figure 8(c) since the nodes distinguished by
these two centrality indices mostly are located on the center
of modules that have many peripheral nodes with one de-
gree. Therefore, interrupting the nodes caught by these two
centrality measures caused many single node isolations and
turned out to be the larger increment of the average path
length. On the other hand, the average path length of the
interruptions on the bridging nodes discriminated by bridg-
ing centrality were also increased significantly with generat-
ing only one singleton in the same intervals. This behavior
insists that interruptions on the bridging nodes resulted in
much longer alternative paths or isolations of larger modules
not singletons.

4. DISCUSSION AND CONCLUSION
Jeong’s group has espoused the degree of a node as a key
basis for essential components identification[14]. These high
degree nodes are called hubs, and hubs have been found to be
important determinants of survival in network perturbation.
Power-law networks are very robust to random attacks but
very vulnerable to targeted attack in this model[2]. Hahn’s
group looked for differences in degree, betweenness, and
closeness centrality between essential and nonessential genes
in three eukaryotic protein interaction networks: yeast, worm,
and fly[12]. These three interaction networks are found to
have remarkable similar structure and the proteins that have
a more central position in networks, regardless of the number
of direct interactors, evolve more slowly and are more likely
to be essential for survival. Estrada’s group introduces a new
centrality measure, which is called subgraph centrality that
characterizes the participation of each node in all subgraphs
in a network[8][9]. The subgraph centrality is better able to
discriminate the lethal nodes of a network than any other
measures in protein interaction networks. Palumbo’s group
tried to find lethal nodes by arc deletion, which could lead to
sub components isolation. They showed that lethality cor-



responds to the lack of alternative paths in the perturbed
network linking the nodes affected by the enzyme deletion
on yeast metabolic network which is a directed network[17].
Existing approaches are focusing only on finding central and
lethal nodes, and it has been proven that these existing ap-
proaches can discriminate lethal nodes very well. We argue
that identifying network’s essential components with these
existing methods is likely to prove suboptimal because of
their limited view of looking at the problem. Guimera’s
group devised a clustering method to identify functional
modules in metabolic pathways and categorized the role of
each component in the pathway according to their topologi-
cal location relative to detected functional modules[11]. An-
notating locality of components in network’s topology based
on a certain clustering method is totally biased by the used
clustering method. So identifying components’ topological
location, e.g., hubs, peripheral nodes, or bridging nodes, in-
dependent from any other methods is more preferable.

While other existing approaches are focusing on targeting
high degree, high central, and high lethal components in
network topology, our bridging centrality discriminates the
bridging nodes with more information flowed through them,
i.e., more central from the information flow aspect, and
also positioned between highly connected regions. We have
shown that bridging centrality successfully distinguishes the
bridging nodes in several real world scale-free networks in-
cluding social, biological, and technical networks. Theoret-
ical analysis of the yeast metabolic network, observing the
clustering coefficient changes and the average path length
behaviors, were performed and showed that the nodes picked
up by bridging centrality are well positioned on the connect-
ing spots between modules.

Throughout the experiments we performed in this paper,
bridging centrality did a great job on identifying the bridg-
ing nodes in real world networks. Bridging centrality have
many possible applications on many research areas. The
recognition of the bridging nodes and information about
the bridging nodes should be very valuable knowledge for
further fruitful achievements in biological researches and
in other fields too. For example, identifying functional or
physical modules or identifying the key components in bi-
ological networks using the bridging centrality will provide
a very effective and totally new way of looking biological
network structures. This promising outcome should also be
applicable to social networks for detecting sub community
structures or discovering the key elements in them. As we
observed in the previous section, while the perturbations on
hubs or the nodes selected by other centrality indices caused
a few local singleton isolations and might have many alter-
native paths due to their high clustering property, which is
one of the main properties of the scale-frre networks, among
neighbors inside the module, the failures on the bridging
nodes, unsurprisingly, caused whole module isolations from
the rest of the network and might have longer alternative
paths or no alternative path at all. So the interruptions
on the bridging nodes could be much more lethal, and the
cost of network failure by interrupting the bridging nodes
would be much higher than the failure on the other nodes.
Therefore, we claim that the bridging nodes picked up by
bridging centrality also reside on the critical positions and
also are worth getting attentions for the network robustness

improvement and paths protection standpoint.

5. FUTURE WORK
It was clearly shown that the bridging nodes discriminated
by bridging centrality are well positioned between highly
connected modules in scale-free networks. Using this bridg-
ing centrality superiority, clustering analysis on scale-free
networks can be accomplished through differentiating mod-
ules by considering the bridging nodes as the boundary of
clusters.
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