
A CONSTRAINED OBJECT APPROACH
TO SYSTEMS BIOLOGY

by

Manu Pushpendran
September 2006

A thesis submitted to the

Faculty of the Graduate School of

the State University of New York at Buffalo

in partial fulfillment of the requirements for the

degree of

Master of Science

Department of Computer Science and Engineering

Acknowledgements

I would like to express my gratitude towards the following people for their

support and guidance in completing my thesis. First and foremost,

sincere thanks to my advisor Dr. Bharat Jayaraman for his time, support

and thoughtful guidance without which this endeavor would not have

been possible. I would also like to thank my committee member Dr.

Aidong Zhang for taking time out from her schedule to review the thesis

draft and serve my committee. I would also like to extend my gratitude

towards Dr. Daniel Fischer for allowing me to audit his course on

Computational Biology which helped me gain significant insights on

many biological terms. Special thanks to Dr. Gokul Das from Roswell

Park Cancer Institute for some thoughtful discussions on the biological

aspects of the thesis. I would also like to acknowledge the valuable

discussions I had with the members of the Language Research Group

here at University at Buffalo, such as Jeffrey Czyz, Hani Girgis, Weihan

Huang and Li Xu. I would also like to thank Dr. Pallavi Tambay for

helping out with the implementation aspects of the Cob language. Special

thanks to the Graduate Secretary Jodi Reiner for taking care of all the

paperwork and to the administrative and support staff of the Computer

Science and Engineering department for all their help and co-operation.

Last but by no measure the least, I would like to thank my family and

friends for their support and encouragement.

 ii

Contents

CHAPTER 1 INTRODUCTION ...1

1.1 MOTIVATION AND SIGNIFICANCE ...1
1.2 CONSTRAINED OBJECT APPROACH ...2

CHAPTER 2 SYSTEMS BIOLOGY ...5
2.1 REQUIREMENTS FOR A COMPUTATIONAL BIOLOGICAL MODEL ..9
2.2 TOWARDS A CONSTRAINED OBJECT APPROACH TO SYSTEMS BIOLOGY9

CHAPTER 3 CONSTRAINED OBJECTS ... 14
3.1 OVERVIEW OF THE COB LANGAUGE ...19
3.2 DYNAMIC CONSTRAINED OBJECTS ...20
3.3 PREFERENCE PREDICATES IN COB. ...30

CHAPTER 4 MODELING METABOLIC NETWORKS.. 31
4.1 METABOLIC NETWORKS..31
4.2 COB MODEL OF METABOLIC NETWORK ...34
4.3 METABOLIC NETWORKS AS DYNAMIC CONSTRAINED OBJECTS ..40

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 53
BIBLIOGRAPHY ..56
APPENDIX A COB MODEL OF METABOLIC NETWORK ...63

 iii

Abstract

Recent advances in bioinformatics combined with genome sequencing

and annotation has lead to the generation of large volumes of molecular

biological data. This influx of information has necessitated better

computational models to interpret the data available and thereby assist

in relating the molecular behavior to system characteristics and

functions. Such holistic approach to biological modeling is called

systems biology.

Research has shown that all the information needed to build a detailed

model of a cell, including the properties of all constituent components

and their interconnectivity, is still not available. However, cells are

subject to various constraints such as mass-balance of reactions,

thermodynamics, regulation, etc., that help to define its behavioral

solution space. Thus, a constraint-based approach to systems biology

can overcome the lack of detailed information by successive imposition of

constraints on the cell behavior. A purely constraint-based approach

however, tends to overlook the structural properties that define the

composition of biological systems. Therefore, in this thesis we propose

and explore the constrained object approach to systems biology. The

constrained object paradigm offers a unified approach towards modeling

the structural properties of biological systems in terms of an object

hierarchy and the behavioral aspects using declarative constraints.

We illustrate our hypothesis by providing a fairly detailed model of a

typical metabolic network using the Cob programming language. The

time-varying behavior of such networks is modeled using the conceptual

extension of Cob called dynamic constrained objects. Additionally, the

paradigm allows objective exploration of the phenotypic solution space

using preference predicates. Our conclusion from this research shows

that constrained objects offer a promising approach to modeling more

complex metabolic networks.

 iv

Chapter 1

Introduction

1.1 Motivation and Significance

Recent advances in the field of molecular biology combined with rapid

technological progress have led to an overwhelming flow of biological

data[1,10,16]. This approach has successfully generated information about

individual cellular components and their functions. It is estimated that,

at the current rate, very soon we would have catalog of individual cellular

components and their functions for a large number of organisms[10].

Such knowledge, while necessary in understanding what constitutes the

system, is not sufficient in understanding or predicting the system’s

behavior. Biological systems tend not to abide by the principle of

behavioral compositionality, i.e. the behavior of the system is not

deducible from the behavioral knowledge of its individual components.

Therefore, in order to understand the emergent properties exhibited by

biological systems, we need computational models that can simulate the

component behavior and their interactions when functioning within a

system’s environment. Experimental studies to observe systemic

behavior tend to be particularly expensive for biological systems[20]. The

challenge posed now is to understand how all the cellular components

collaborate within living systems.

Systems biology[16,21,35] aims to develop a system-level understanding of

biological systems. Such holistic knowledge will enable scientists to link

molecular behavior to system characteristics and functions.

Computational models for biological systems, thus, will be helpful in

analyzing, interpreting and even predicting the genotype - phenotype

 1

relationship. The approaches to systems biology can be broadly

classified as graph-theoretic, mathematical, object-based, or constraint-

based approaches. Graph-theoretic approaches[31] represent the

structure of reaction pathways in terms of how ‘substances’ are

connected to each other by reactions. However, they exhibit severe

shortcoming in representing reactions other than monomolecular. Purely

mathematical models[42] are extremely limited at representing the

structural characteristics inherent to all biological systems. Object-based

approaches[36] are impeded by the lack of detailed structural information.

Constraint-based approaches[22] to cell modeling have the distinct

advantage that they can overcome the lack of detailed information by

imposing constraints such as mass-balance of reactions,

thermodynamics, regulation, etc., that limit the possible cellular

behavior. By imposing these constraints on a cell it is possible to predict

what the cell can and cannot do. This approach leads to the formulation

of solution spaces in which the behavior of a cell is likely to be. The

solution space defines the likely phenotypic behavior a cell. Thus, we

feel that the constraint-based strategy offers a promising approach to

modeling biological systems and processes.

1.2 Constrained Object approach to Systems Biology

A purely constraint-based approach fails to account for the inherent

structural characteristics exhibited by biological entities and the

variation in their interactions influenced by a dynamic environment. For

this reason, we explore a more comprehensive paradigm which caters to

both structural and behavioral modeling. The constrained object

paradigm[37] (Cob) is aimed at modeling systems that are compositional in

nature, and whose emergent behavior is governed by certain laws or

rules governing the constituent components and their interactions. The

 2

Cob language[38] and its modeling environment, which was developed at

the University at Buffalo, has been successfully applied at modeling

engineering entities such as electrical networks of interconnected

components.

The Cob language supports some of the traditional object oriented

features such as inheritance, encapsulation, aggregation etc. as well as

declarative specification of system behavior through constraints. The Cob

environment also facilitates visual development and manipulation of

models. In this thesis we apply the constrained object paradigm towards

modeling complex biological entities such as metabolic networks. We

show the application of Cob principles in modeling a representative

metabolic network. The traditional Cob model, however, is aimed at

modeling static system behavior. Therefore, in order to model the

dynamic behavior exhibited by biological networks, such as metabolic

pathways, we employ the concept of dynamic constrained object[23]. The

metabolic pathways are often defined by a system of underdetermined

biochemical reactions. Therefore, in order to understand specific system

behavior we need to employ optimization criteria on the network. Cob

facilitates the observation and analysis of specific system behavior by

application of preference predicates.

The rest of this thesis is organized as follows: Chapter 2 presents the

motivation behind building a computational model for biological systems.

We review the notion of systems biology aimed at an integrative analysis

the data obtained from molecular biology and identify some of the

requirements for a computational biological model based on our

literature survey. We then elaborate on the motivation for a Constrained

Object approach and the advantages it offers over other models. Finally,

we present a brief overview of some of the constraints that we will

incorporate in our model of a metabolic pathway in Chapter 4.

 3

Chapter 3 details the constrained object paradigm. We briefly review the

syntax of the Cob language and illustrate the paradigm of constrained

objects through the example of a DC circuit. The basic paradigm of

constrained object however cannot easily model dynamic behavior.

Therefore, we present the concept of dynamic constrained object and

illustrate it in modeling AC Circuits and the nerve cell behavior. In

chapter 4 we illustrate the Cob approach to systems biology by building a

dynamic Cob model for a hypothetical metabolic network. We also

illustrate the ability of Cob in exploring the under-determined behavioral

solution space, defined by such reaction pathways, through specification

of preference predicates. Finally, we list the advantages in employing the

Cob paradigm over traditional modeling methodologies. Chapter 5

presents the conclusions from our study and some open areas for future

research in this area.

 4

Chapter 2

Systems Biology

Genome sequencing and annotation combined with high-throughput

technologies continues to generate large amounts of molecular

information for a wide range of organisms. Such reductionist approaches

have focused on analyzing individual cellular components, their

composition and functions. However the cellular components and their

functions in isolation do not enable us to understand the overall cellular

behavior. In this chapter we review the systems biology approach

towards understanding biological behavior, and state the requirements

for a quantitative computational model to simulate and/or predict

systemic behavior exhibited by biological entities.

Molecular biology has traditionally focused on identifying and analyzing

individual cellular components, their composition and functions. Such

approaches may soon result in a catalog of cellular components for a

large number of organisms[10]. Although an understanding of the

individual components of the system is important towards understanding

the system as a whole, it is not sufficient[15,16]. In order to make sense of

the all the molecular data being generated we need to understand the

component behavior from a systems perspective. The behavioral

properties of biological systems can be better understood by studying the

interactions of these components with one another in the context of their

operating environment.

To put things in perspective, let’s consider the example of a complex

engineering entity such as a spaceship. A thorough understanding of all

the components it is built of and their functions, although important and

essential, would be insufficient in determining the overall functional

properties of the spaceship. Similarly, biological systems exhibit

 5

emergent properties that cannot be predicted based on the properties of

their components alone. Systems biology promises to provide a

comprehensive quantitative analysis of the manner in which all the

components of a biological system interact functionally over time[1].

2.1 Requirements for a Computational Biological Model

Experimental results indicate that there is no one-to-one relationship

between individual cellular components and overall cellular functions [34].

This relationship is extremely complex and highly nonlinear, and thus

cannot be predicted from knowledge of the components and their

functions alone. Therefore in order to understand and predict cellular

behavior, the function of each cellular component must be placed in the

context of the interrelatedness and connectivity of cellular components

working towards attaining the overall goals of a cellular function [27]. This

interrelatedness constitutes a network. Due to the complexity of such

networks operating within cells and large number of components

involved, it is extremely difficult to understand the behavior of such

networks by purely analytical techniques. We therefore need to build

representative computational models that can simulate the behavior of

such networks in order to understand their complex patterns and

relationships and thereby be in a better position to predict their behavior
[18].

Our study of literature in this area indicates that quantitative models

built to simulate biological behavior should address the following issues:

 System structure

One of the key requirements to understand a biological system is

to first identify the structure of the system. The model should be

able to depict the component based structure exhibited by cells

 6

and cellular components. Towards this end one must identify all

the components of the system, their functions and associated

parameters. The model should facilitate understanding of physical

structure of whole organisms at the cellular level. Such models can

then be used to simulate a quantitative analysis of the system’s

response and its behavioral profile [16].

 Component attributes

Once the system structure has been identified, we need to focus on

identifying attributes that define the behavior of each of those

components. The model also needs to account for attributes that

influence the interaction between these components.

 Emergent behavior

As already stated biological systems don’t tend to abide by the

principles of behavioral compositionality. In other words the overall

behavioral properties exhibited by biological systems tend to be

vastly different from the properties exhibited by their individual

components. The model should be able to identify each

component’s behavior in context of the whole organism and its

environment. It is therefore imperative that any computational

model that simulates biological systems or processes be able to

emulate their emergent behavior. It needs to account for how the

organism adapts to changes in the environment, and various

stimuli, how it maintains robustness against potential damages to

the system, how it exhibits the functions observed [16].

 Dynamic behavior

The emergent behavior exhibited by biological systems also tends

to change with time and operating conditions. In other words the

system behavior at a given instant depends upon the constraints

under which it is acting and the cell objective at that instant. For

example in glucose rich medium the cell may decide to maximize

growth by optimizing biomass generation.

 7

 Visual modeling environment

Since such models are intended to be used primarily by biologists,

usability is another important issue that needs to be factored in

the design goals. Biologists would prefer to access and modify the

underlying model using the visual representation. Therefore such

models need to be able to map the visual representation to the

underlying code. We need to provide a visual modeling

environment that facilitates interactive design and verification.

Thereby, it should be possible to fine tune the model using the

visual interface as opposed to manipulating the underlying code

written to build the model.

 Incremental design

Flexibility in design is another key consideration for any such

computational model. This need arises from incomplete knowledge

of constraints and erroneous annotation when building such

models [15,20,35]. Much of the modeling would thus be hypothesis

driven; wherein the model would enable us to make behavioral

predictions which will then be tested using in vivo /in vitro

methods. The results would either confirm the hypothesis or lead

to reevaluation of the model. The model may also need to be

updated as and when new information becomes available from the

molecular databases. Thus, the model should be flexible enough to

allow iterative development.

 Biological fidelity

Any such computational model needs to be consistent with

underlying biochemistry and genetics. Although complete gene

portfolios for a large number of organisms are available, functional

assignment to these genes is presently incomplete [reference].

Thus, in spite of impressive bioinformatics databases, not all

information needed to build a detailed computational model of a

whole cell is still available[20]. So, it is likely that such a model may

 8

be built on certain assumptions/extrapolation about attributes

and/or functions. However such hypothesis needs to be then

verified experimentally and any deviation between the observed

and expected behavior should be fed back in the model so that it is

consistent with observed biological behavior.

 Scalability

According to the Human Genome Project, the human genome

contains around 3164.7 million chemical nucleotide bases and is

estimated to contain around 20000-25000 genes. The mere size of

these numbers is indicative of the kind of scale such a model will

need to confront with. Thus, scalability is a critical design

parameter for any computational model of a biological system.

2.2 Towards a Constrained Object Approach

As stated in section 2.1, the ability of a computational model of a

biological system to predict phenotypic system behavior lies in its ability

to model, through a visual modeling environment, the systems structure

and its components i.e. their attributes and interactions.

In independent research earlier [Regev A., Shapiro E.] had proposed the

idea of modeling cells as computational entities. They proposed the idea

of using abstraction to model bio-molecular systems so that these

complex systems could be described hierarchically. Thus, a system of

interacting molecular entities could be described and modeled by a

system of interacting computational entities.

Elsewhere [Hartwell L.H., Hopfield J.J. Leibler S., Murray A.W.] have

proposed the notion of modular biology towards identifying ‘functional

modules’ for representing the biological organization. They define

functional modules as discrete entities whose function is separable from

those of other modules. The higher-level properties of the cell are then

 9

described by the pattern of connections among their functional modules.

[Kitano H. et.al.] proposed modeling the systemic structure and behavior

exhibited by biological entities, which would enable us to control the

state of the system. They have emphasized on understanding the

physical structure of whole organisms at the cellular level as the first

step towards understanding biological systems.

Meanwhile, in independent parallel research, investigators at UCSD led

by Dr. Palsson have proposed a constraint based approach to cell

modeling. Their motivation for constraint based approach stems from the

fact that, in spite of huge bioinformatics databases, all the information

needed to build a computer model of a whole cell, at a level of detail that

contains information on both, the properties of each component in the

system as well as their interconnectivity, is still not available. However,

this lack of information can be countered by modeling cellular behavior

based on the constraints acting on the cell [5,22,24,]. The constraints help

to define a solution space in which the phenotypic behavior of the cell is

likely to lie, as opposed to a unique solution. This solution space can

then be refined further by optimizing on some criteria which would

represent a particular phenotypic trait. A purely constraint based

approach however fails to account for the structural characteristics,

modularity and the contextual behavior exhibited by biological entities.

Based on the literature analysis presented above and the issues faced

therein, we propose a unified approach to modeling biological systems

that overcomes the limitations of a purely structural modeling approach

by incorporating constraints, in the definition of those structural entities

and their interactions, in the model. The Constrained Object paradigm

developed by researchers lead by Dr. B. Jayaraman at the University at

Buffalo, has been shown to model engineering entities like trusses,

circuits, etc. with considerable amount of success [37]. We’ll review some

of the constraints a cell is subject to in the following section; a detailed

 10

explanation of the Constrained Object paradigm with relevant examples

is presented in the following chapter.

 Biological constraints

The constraints acting on a cell can be classified broadly as invariant

(hard) or adjustable (soft) constraints. The hard constraints define the

boundaries of the solution space and thus represent the range of

possible phenotypic behaviors for a cell. Several classifications schemes

have been proposed for the type of constraints a cell is subject to [14,22].

Following the work of Dr. Palsson and collaborators we use the following

constraint classification scheme:

Physicochemical constraints

They represent hard constraints on the cell. Examples of such

constraints include balance of mass and energy. Mass and energy can be

never created or destroyed in the cell. Therefore elements entering the

cell need to be either incorporated for cell growth and replication or

utilized to generate energy needed to carry out cellular functions or

secreted into the extra cellular environment. Excess biochemical

products tend to accumulate over time and result in cellular toxicity and

death [cite reference]. Energy imbalance has similar detrimental

consequences. Balance of mass and energy thus imposes critical

constraints on the cellular behavior. The total number of components

that can be contained in the cell is constrained by the cell volume;

another physicochemical constraint. Reaction thermodynamics and

enzyme capacity pose additional physicochemical constraints on the cell.

The thermodynamics of internal reactions determine the direction in

which the reactions proceed. The presence of enzymes facilitates

 11

conversion of substrates into products. The maximum enzyme capacity

thus influences the possible cellular behavior.

Environmental constraints

The constraints imposed on the cell by its internal and external

environment has a significant influence on the cellular behavior. The

presence or absence of necessary compounds, physical characteristics of

the external environment such as temperature, pressure, pH, exposure

to light or water etc. are some of the constraints the external

environment can impose on the cell. Inadequate knowledge of these

constraints may lead to incorrect or misleading predictions of cell

behavior and hence they need to be factored in the quantitative analysis

of cellular behavior [5]. The dense internal environment of a cell creates

osmotic pressure in relation to the external environment that must be

balanced while maintaining an electro neutral environment on both sides

of the cell membrane. The osmotic and electroneutrality constraints

affect the cell volume which in turn restricts the total number of

components that can be contained in the cell [5].

Regulatory constraints

Unlike the above, regulatory constraints are imposed by the cell on

themselves in order to cope with the constraints imposed by the internal

and external environments. They, thus tend to be time dependent.

Through these constraints, cells are able regulate to a certain extent

which genes are expressed, which proteins are present and even the

activity of proteins in cells. These constraints help to further limit the

space of possible cell functions.

For a more detailed analysis of above constraint classification scheme the

reader is referred to [20].

 12

Summary

Thus, in this chapter we have looked at the motivation in building

computational models to represent biological phenomenon. We detailed

the systems biology approach towards understanding the emergent

behavior exhibited by biological systems. We also reviewed the

requirements for such a computational biological model. We then

elaborated on the motivation for a constrained object approach, which

offers the distinct advantage of being able to model structural

characteristics, and at the same time can overcome the lack of detailed

information therein, through declarative specification of constraints on

the model’s behavioral solution space. Towards this end, we also saw

some of the typical constraints acting on a cell. Some of these constraints

will be employed when we build the Cob model for a metabolic pathway

in Chapter 4.

 13

Chapter 3

Constrained Objects

The object oriented modeling paradigm bas been successfully applied to

model many real world complex entities. In this paradigm, objects are

essentially containers for data and the behavior is abstracted through an

interface of procedures. In the constrained object modeling paradigm[37]

that we present in this chapter, an object is also a container for data.

However, in contrast with traditional objects, a constrained object is one

whose attributes are governed by certain laws or invariants. When such

objects are aggregated to form complex entities, their internal attributes

are often subject to additional interface constraints. Thus, the resultant

state of the complex entity can be deduced only by satisfying both the

internal and the interface constraints of the constituent objects.

To illustrate the notion of constrained objects, let us consider the

example of a resistor in an electrical circuit. Its state maybe represented

by three variables V (voltage), I (current) and R (resistance). However,

these state variables cannot change independently, instead they are

governed by Ohm’s law: V = I * R. Thus, a resistor is a constrained

object. Similarly other electrical components such as capacitors,

inductors, voltage sources, etc. can also be viewed as constrained objects

as we explain further in the example in the next section. Now, when

several such objects meet at a node, the node is subject to Kirchhoff’s

current law, namely, the sum of currents at the node must be zero.

Thus, the node is also a constrained object. Constrained objects, thus,

provide a principled approach to compositional modeling of complex

 14

systems wherein the behavior of a component by itself and in relation to

other components is governed by laws or rules.

In general, modeling such entities involves the specification of both the

structure and behavior of their constituent components. While structure

can be modeled using objects and aggregation/inheritance hierarchies,

modeling behavior using traditional imperative procedures places the

responsibility of enforcing them on the programmer. Constraints

facilitate a declarative specification of the behavior of a complex system.

The Constrained Object paradigm thus, can be viewed as a declarative

approach to object-oriented programming.

3.1 Overview of Cob Language

Cob (for Constrained object) is a programming language[37] that supports

some of the traditional object oriented features such as inheritance,

encapsulation and aggregation as well as declarative language features

such as arithmetic equations and inequalities, quantified and conditional

constraints etc. Cob provides a modeling environment that facilitates

compositional specification of the structure of a system, declarative

specification of its behavior and visual development and manipulation of

the underlying model. The following description of Cob syntax has been

adapted from [37].

A Cob program is a sequence of class definitions and each constrained

object is an instance of some class.

 program ::= class_definition+

A class definition consists of attributes, constraints, predicates and

constructors.

 15

class_definition ::= [abstract] class class_id
 [extends class_id] {body}

 body ::= [attributes attributes]

 [constraints constraints]
 [predicates predicates]
 [constructors constructor_clause]

An attribute is a typed identifier, where the type is either a primitive type

or user-defined type or an array of primitive or user-defined type.

attributes ::= decl; [decl;]+
decl ::= type id_list
type ::= primitive_type_id | class_id |

 type[]
primitive_type_id ::= real | int | bool | char | string
id_list ::= attribute_id [, attribute_id]+

Constraints define the relation over the attributes of one or more classes.

constraints ::= constraint; [constraint;]+
constraint ::= simple_constraint |
 quantified constraint |
 creational_constraint
creational_constraint ::= complex_id = new class_id(terms)
quantified_constraint ::= forall var in enum:(constraints)|
 exists var in enum:(constraints)
simple_constraint ::= conditional_constraint |
 constraint_atom
conditional_constraint::= constraint_atom :- literals
constraint_atom ::= term relop term |
 constraint_predicate_id(terms)
relop ::= =|!=|>|<|>=|<=

Terms can appear in constraints or as arguments to functions,

predicates or constructors.

 term ::= constant | var | complex_id | (term) |
 arithmetic_expr | func_id (terms) | [terms]
 | sum var in enum : term
 | prod var in enum : term

 16

 | min var in enum : term
 | max var in enum : term
 terms ::= term [,term]+

complex_id: A complex identifier refers to an element of an array or to

an attribute of an object.

 complex_id ::= attribute_id[.attribute_id]+ |
 complex_id [term]

A Literal can be an atom or the negation of an atom:

 literals ::= literal[,literal]+

 literal ::= [not] atom
 atom ::= predicate_id(terms) | constraint_atom

Constructor – A class can have more than one constructors and a class

without a constructor must be declared as abstract:

 constructor_clauses ::= constructor_clause+

 constructor_clause ::= constructor_id(formal_pars) {
 constructor_body }
 constructor_body ::= constraints

Example (DC Circuit)

Consider the example of an electrical circuit consisting of a series-

parallel combination of resistors. The components and connections of

such a circuit can be modeled as constrained objects. The component

class models any electrical entity (e.g resistor, battery) that has two ends.

The attributes of this class represent the currents and voltages at the two

ends of the entity. The constraint in class resistor represents Ohm’s

law. The class end represents the terminal ends of a component. A

collection of ends meet at a node, where they are subject to Kirchhoff’s

 17

current law constraint i.e. the sum of currents entering and leaving that

node must be zero.

Figure 3.1 An example of DC circuit (adapted from [37])

abstract class component {
 attributes
 real V1, V2, I1, I2;
 constraints
 I1 + I2 = 0;
}

class resistor extends component {
 attributes
 real R;
 constraints
 V1 – V2 = I1 * R;
 constructor resistor(D) { R = D; }
}

class battery extends component {
 attributes
 real V;
 constraints
 V2 = 0;
 constructor battery(X) { V1 = X; }
}

 18

class end {
 attributes
 component C;
 real E,V,I;
 constraints
 V = C.V1 :- E = 1;
 V = C.V2 :- E = 2;
 V = C.I1 :- E = 1;
 V = C.I2 :- E = 2;
constructor end(C1,E1)
{ C = C1; E = E1; }
}

class node {
 attributes
 end [] Ce;
 real V;
 constraints
 sum C in Ce: C.I = 0;
 forall C in Ce: C.V = V;
 constructor node(L) {
 Ce = L; }
}

Using the above class definitions we can give a constrained object

definition of the circuit class as:

class samplecircuit {
 attributes
 resistor R12, R13, R23, R24, R34;
 battery B;
 end Re121, Re122, Re131, Re132, Re231, Re232, Re241,
 Re242, Re341, Re342, Be1, Be2;
 node N1, N2, N3, N4;
 constructor samplecircuit(X) {
 R12 = new resistor(10);
 R13 = new resistor(10);
 R23 = new resistor(5);
 R24 = new resistor(10);
 R34 = new resistor(5);
 Re121 = new end(R12, 1); Re122 = new end(R12,2);
 Re131 = new end(R13,1); Re132 = new end(R13,2);
 Re231 = new end(R23,1); Re232 = new end(R23,2);
 Re241 = new end(R24,1); Re242 = new end(R24,2);
 Re341 = new end(R34,1); Re342 = new end(R34,2);
 B = new battery(10);

 19

 Be1 = new end(B,1); Be2 = new end(B,2);
 N1 = new node([Re121, Be1, Re131]);
 N2 = new node([Re122, Re241, Re231]);
 N3 = new node([Re132, Re232, Re341]);
 N4 = new node([Re242, Re342, Be2]);
 }
}

3.2 Dynamic Constrained Objects

Biological entities tend to exhibit dynamic behavior, that is, their

behavior tends to change with time and the environmental conditions

under which they are functioning. The notion of constrained objects

presented in the section above is suitable for modeling systems whose

behavior remains essentially static over time. However, for modeling

continuously evolving biological entities, we illustrate in this section the

notion of dynamic constrained objects[23]. This is followed by the syntax

and usage characteristics and some examples in the next section.

The constrained object paradigm and its applications discussed in the

section above relied on the steady state behavior of systems. However,

certain systems tend to exhibit dynamic behavior, i.e. their state changes

with time. For some systems, such state changes can be represented

mathematically, whereas on other occasions certain aspects of the time-

varying behavior can be characterized by behavioral constraints, while

other aspects need to be provided as time-series data[23]. Therefore, in

order to represent the dynamic behavior exhibited by such systems we

need to maintain information regarding previous states and also be able

to enforce constraints that relate a state to those of its previous or

succeeding states. To incorporate such functionality in the Cob paradigm

the notion of series variable was conceived. Series variables can hold a

 20

range of values representing different system states. These values can be

updated according to certain constraints. The dynamic system behavior

can now be modeled by specifying constraints over these series variables.

Syntax and Usage [adapted from 23]

The D-Cob extends the Cob syntax by introducing two new features: the

series variable and dynamic class.

program ::= class_definition+

class_definition ::= [abstract] [dynamic] class
 class_id [extends class_id] { body }

body ::= [attributes attributes]
 [constraints constraints]

 [predicates pred_clauses]
 [constructors constructor_clause]

attributes ::= decl ; [decl ;]+

decl ::= type id_list |
 series_decl

series_decl ::= series attribute_id = series_type

series_type ::= term | [terms]

type ::= [series] primitive_type_id |
 class_id | type[]

primitive_type_id ::= real | int | bool | char | string

id_list ::= attribute_id [, attributes_id]+

The keyword dynamic indicates that the class has constraints which

specify dynamic behavior. The keyword series indicates the variable

can store values over different instants of time.

Usage: The ‘ operator applied on a series variable addresses values in

the previous state(s), whereas the ’operator addresses values in the

future state(s).

 21

Example (AC Circuit)

In section 3.1.3 we illustrated the use of Cob in modeling DC circuit with

resistors connected in parallel. Now, consider the case for an AC circuit.

The primary difference between the two is that in an AC circuit the

voltage across the circuit will vary over time and secondly the circuit may

have inductors and/or capacitors.

The electrical law that governs the behavior of a capacitor is given as

I = C × dV/dt

where C is the capacitance, and dV/dt represents the change in voltage

over time. In order to model such behavior in D-Cob the differentiation is

approximated by a difference equation which can be represented using

the series variable. Thus, the above equation remodeled as a difference

equation can be written as,

I = C × ∆V ⁄ ∆t

Now, assuming unit time difference for ∆t, current I and voltage V can be

represented using series variables. So the D-Cob code for above

behavioral constraint becomes,

I = C × (V – V’)

Similarly, an inductor’s electrical constraint given as,

V = L × dI/dt

can be transformed into the equivalent D-Cob code,

V = L × (I – I’)

Consider the simple AC circuit shown below,

 22

Figure 3.2: Sample AC Circuit

Let’s assume the following specifications for the components in the above

circuit: Inductor 0.1 henry, Resistor 10 ohm, Capacitor 0.1 farad, AC

voltage source 10 * sin(10 * t).

Cob code for the parent class component is given below.

abstract dynamic class component {
 attributes
 series real I1, I2, V1, V2;
 constraints
 I1 + I2 = 0;
}

Note that the constraint I1 + I2 = 0 in the above code holds over all

progressive values of the series variables I1 and I2.

 23

class resistor extends
component {
 attributes
 real R;
 constraints
 V1 – V2 = I1 * R;
 constructor resistor(D) {
 R = D;
 }
}

class capacitor extends component
{
 attributes
 real C;
 constraints
 I1 = C * ((V1 – V2) –
 (V1’ – V2’));
 constructor capacitor(C1) {
 C = C1;
 V1<1> = 0;
 V2<1> = 0;
 }
}

class inductor extends
component {
 attributes
 real L;
 constraints
 V1 – V2 = L*(I1 – I1’)
 constructor inductor(L1) {
 L = L1;
 I1<1> = 0;
 }
}

class voltagesource extends
component {
 constraints
 V2 = 0;
 constructor voltagesource(X) {
 V1 = X;
 }
}

dynamic class componentEnd {
 attributes
 component C;
 series real V, I;
 int End;
 constraints
 V = C.V1 :- End = 1;
 V = C.V2 :- End = 2;
 I = C.I1 :- End = 1;
 I = C.I2 :- End = 2;
 constructor componentEnd(C1,E)
 {
 C = C1;
 End = E;
 }
}

dynamic class node {
 attributes
 componentEnd [] Ce;
 series real[] V;
 constraints
 sum X in Ce: X.I = 0;
 forall X in Ce: X.V = V;
 constructor node(L) {
 Ce = L;
 }
}

 24

dynamic class samplecircuit {
 attributes
 resistor R;
 real [] voltages;
 voltagesource B;
 capacitor Cl
 inductor Il
 componentEnd R1,R2,B1,B2,C1,C2,I1,I2;
 node N1,N2,N3;
 constructors samplecircuit() {
 R = new resistor(10);
 C = new capacitor(0.2);
 I = new inductor(0.1);
 Time[1] = 0;
 Voltages = 10 * sin(0.1 * Time);
 B = new voltagesource(Voltages);
 B1 = new componentEnd(B,1);
 B2 = new componentEnd(B,2);
 R1 = new componentEnd(R,1);
 R2 = new componentEnd(R,2);
 C1 = new componentEnd(C,1);
 C2 = new componentEnd(C,2);
 I1 = new componentEnd(I,1);
 I2 = new componentEnd(I,2);
 N1 = new node([C1,B1]);
 N2 = new node([B2,R1,I1]);
 N3 = new node([C2,R2,I2]);
 }
}

Example (Nerve Cell Behavior Model)

Under the Hodgkin and Huxley’s mathematical model[44] for nerve cell

behavior, the total current flow through a cell membrane is the sum total

of capacitive and resistive current flows. The capacitive current is defined

by the equation:

I = C * dv/dt where C and V denote the membrane capacitance

and trans-membrane potential. The resistive current is defined as:

 25

Iion = gion – (V – Eion) where V represents the transmembrane

potential, Eion the equilibrium potentials of the individual ions and gion

the conductance of ion channels.

There are three different types of ion flow viz. sodium, potassium and a

leak current. However, experiments demonstrated that only currents

induced by sodium and potassium are time variant. The total resistive

current is given as:

 Ires = gNa × m3 × h × (V – ENa) + gk × n4 × (V –EK) + gL × (V – EL)
where m and h represent the gates that control sodium flow, while the n

gate controls potassium flow.

Each of these gates satisfies the following equation:

dX/dt = x(v) × (1 - x) – βx(v) × x

in which x stands for m, h or n and x and βx are coefficients that

depend on V and associate with m, h or n respectively.

We now list details of the dynamic cob representation for above model.

This representation has been adapted from [43].

The series variable V is used to represent the voltage between the inner

and outer side of the cell and I for current. M, H and N represent

coefficients for the resistive current.

dynamic class HodgkinHuxley {
 attributes
 series real V,M,H,N;
 real I;
 constraints
 V – V’ = I – (120*pow(M,3) * H(V+155) + 36 * pow(N,4) *
 (V -12) + 0.3 * (V+10.6));
 M – M’ = (1 - M)*((V’ + 25)/10) / (exp((V’+25)/10) – 1)
 - M*4*exp(V’/18);
 H – H’ = (1 – H)*0.07*exp(V’/20) –
 H/(1+exp((V’+30)/10));
 N – N’ = (1 – N)*0.1*((V’+10)/10)/(exp(((V’+10)/10)-1)-
 N*0.125*exp(V’/80);

 26

 constructors HodgkinHuxley(A) {
 I = A;
 V<1> = 0; M<1> = 0; H<1> = 0; N<1> = 0;
 }
}

3.3 Preference Predicates in Cob

Sometimes the imposition of constraints on a system may lead to

solution spaces as opposed to any unique solution. In order to achieve

desired objective within this solution space Cob provides the notion of

preference predicates. Thus, by specifying an optimization criterion for

under-determined systems we can specify the desired behavior from such

systems.

For example consider the problem of minimizing the use of raw materials

in the combination of mixers and separators in chemical engineering

domain. This problem was originally formulated by [Tambay et.al] in her

doctoral dissertation[37] and is adapted for presentation in this thesis.

The problem can be modeled using the notion of preference predicates in

Cob. Consider the scheme of separators and mixers as shown in figure

3.3:

 27

 Figure 3.3 Mixers and Separators [redrawn from 37]

The raw materials R1 and R2 are split and a part of each (I1 and I2

respectively) is sent to a separator which separates its ingredients. The

mixer combines these ingredients in some proportion to produce the

desired chemical Mout. W1 and W2 are waste streams from the

separators. The problem then, is to produce Mout while minimizing I1

and I2 thereby minimizing the cost of processing material in the

separators.

The key classes identified are stream to represent the input raw

material stream, equipment class models any equipment with some

input and output streams and the Flowsheet class wherein we specify

the preference min (I1.FlowRate + I2.FlowRate). The Cob model can

then be used to determine the optimal consumption of input raw

material.

 28

class stream {
 attributes
 real FlowRate;
 real [] Concentrations;
 constraints
 sum C in Concentrations:C = 1;
 constructors stream(Q, C) {
 FlowRate = Q; Concentrations = C;
 }
}
class equipment {
 attributes
 stream [] InStream, OutStream;
 int NIngredients;

 constraints % law of mass balance
 forall I in 1..NIngredients :
 (sum J in InStream :(J.FlowRate * J.Concentrations[I])) =
 (sum K in OutStream: (K.FlowRate * K.Concentrations[I]));

 constructors equipment(In,Out,NumIng) {
 InStream = In;
 OutStream = Out;
 NIngredients = NumIng;
 }
}
class sampleFlowsheet {
 attributes
 stream I1, I2, S1out, S2out, Mout, W1, W2;
 equipment S1, S2, M1;
 real Q1, Q2;
 constraints
 Mout.FlowRate = 150;
 Mout.Concentrations = [0.2,0.8,0.0];
 I1.FlowRate = 500;
 I2.FlowRate = 600;
 preferences
 min (I1.FlowRate + I2.FlowRate).
 constructors sampleFlowsheet() {
 I1 = new stream(Q1, [0.5, 0.3, 0.2]);
 I2 = new stream(Q2, [0.05, 0.4, 0.55]);
 S1 = new equipment([I1], [S1out, W1], 3);
 S2 = new equipment([I2], [S2out, W2], 3);
 M1 = new equipment([S1out, S2out], [Mout], 3);
 }
}

 29

Summary

In this chapter we have seen the Constrained Object approach applied at

modeling some real world entities from the engineering domain such as

circuits. We also illustrated the notion of dynamic constrained objects,

their significance and application in modeling dynamic behavior such as

in an AC circuit. Finally, we looked at the application of Cob in modeling

a biological phenomenon namely, the nerve cell behavior, based on the

mathematical model proposed by Hodgkin and Huxley. However, being a

purely mathematical model it failed to account for the structural

characteristics that are inherent to every biological system. In the next

chapter we will explore a specific biological process, its structural and

behavioral characteristics, and how it could be modeled using the Cob

paradigm. We also discuss the distinct advantages it offers in doing so,

over traditional modeling methodologies.

 30

Chapter 4

Modeling Metabolic Networks

The idea of modeling biological systems as constrained objects has been

the main theme of this thesis. Earlier, in section 2.3, we cited the distinct

advantages offered by the constrained object paradigm over purely

constraint based models or purely object models that simulated behavior

by enforcing constraints as procedural code. To reiterate, constrained

object paradigm allows compositional specification of the structure of any

biological system and declarative specification of its behavior through

constraints on the objects and their interactions. Besides, the paradigm

also facilitates visual development and manipulation of the underlying

model where appropriate. In this chapter we illustrate this idea by

modeling a representative metabolic network using the Cob paradigm

and present the distinct advantages it offers in doing so, over traditional

modeling methodologies.

4.1 Metabolic Networks

Metabolism can be considered as a highly integrated network of chemical

reactions that converts a particular molecule into some other molecule or

molecules in a carefully defined fashion[2]. This process may be

accompanied by the consumption or liberation of energy. Metabolism

helps us understand how a cell meets it survival objectives. The choice of

modeling metabolic network was motivated by the fact that most of the

functional annotation completed thus far has been for genes that encode

for metabolic functions. Although the number of reactions that

 31

constitute a metabolic network even in the simplest of organisms is fairly

large, the types of reactions are small and principles for reconstruction of

such reactions are well established[2]. Such networks tend to be

structurally similar to circuits encountered in electrical engineering

domain, although the interactions within these metabolic networks tend

to be many orders of magnitudes more complicated. Metabolism

facilitates distribution and processing of metabolites throughout its

extensive map of pathways. Thus, computational models simulating such

networks would help us to understand and thereby be in a position to

predict their behavior. It would thus enable us to enhance performance

of certain pathways or introduce entirely novel routes for the production

of various biochemicals of interest[29]. In section 2.3 we presented one of

the classifications schemes for constraints acting on a biological system.

We’ll consider their relevance as applicable to metabolic networks as we

build our Cob model for the same.

Stoichiometric constraints

The reaction equations define the interconnectivity and interactions

between the metabolites in the network. They represent the

stoichiometric conversion of substrates into products. Some of these

reactions are regulated by concentration of enzymes in their

environment. These enzymatic reactions as well as the transport of

metabolites across system boundaries constitute fluxes which help to

dissipate and generate metabolites [29]. A flux balance equation can be

written around each metabolite where the difference between the rate of

production and consumption of that metabolite is equivalent to the

change in concentration of that metabolite over time, in accordance with

the law of conservation of mass. Thus, considering the quasi-steady state

behavior inside the cell, we can write the following mass balance

equation around each metabolite for a system of m metabolites involved

in n reactions:

 32

 S.v = 0 (1)

This equation represents the stoichiometric constraints on the metabolic

network. S is an m X n matrix wherein the Sijth element represents the

number of moles of metabolite i participating in reaction j. v is a vector of

unknown metabolic fluxes through the j reactions. Eq(1) thus imposes

the constraint that total rate of production for any metabolite must equal

the total rate of consumption for that metabolite [23]. Excess biochemical

products tend to accumulate over time with detrimental consequences

for the cell. This mass balance equation is formally analogous to

Kirchhoff’s current law used in electrical circuit analysis, where the

currents entering and leaving a node must sum to zero. Once the

genomic sequence for an organism has been annotated the entire

metabolic map representing stoichiometry of all metabolic reactions

taking place in the cell can be constructed [26]. However, this matrix

formulation representing stoichiometry of metabolic reactions provides a

purely mathematical perspective of the metabolic pathway. It fails to

account for the structural properties inherent to constituent metabolites,

the pathway itself and its operating environment. A matrix based

representation of the reactions is thus very limited in expressing

structural characteristics of the involved entities.

Thermodynamic and enzyme capacity constraints

In addition to stoichiometric constraints, thermodynamics and enzyme

capacity constraints are also employed to further limit the possible range

of flux values. Thermodynamics associated with reaction equilibrium

causes some reactions in the metabolic network to be irreversible.

Furthermore, reversible reactions can be decomposed into a forward and

reverse component thereby constraining the flux values through these

reactions to be positive values [5]. Enzyme capacity constraints place an

upper limit on the values a given flux can take. These values can be

determined experimentally using procedures detailed in [33].

 33

Regulatory constraints

In order to cope with the hard physicochemical constraints listed above

the cell imposes upon itself certain regulatory constraints. As opposed to

the rigid physicochemical constraints these regulatory constraints tend

to be transitory, that is they are influenced by the state of external and

internal environment at any given time. Regulatory constraints are often

expressed through enzymes that control the transcriptional activity of

genes and thereby are able to control to a certain extent which genes are

expressed, which proteins are present and even the activity of proteins in

cells. Inclusion of these regulatory constraints has been shown to

significantly influence the prediction capabilities of metabolic

networks[6,8].

Thus, in the section below we will consider the application of these

constraints i.e. stoichiometric, thermodynamic, enzyme capacity and

regulatory constraints to a hypothetical metabolic network using the Cob

paradigm.

4.2 Example

We will be often using the terms substrate, metabolic product, biomass

constituents and intracellular metabolite in this and some of the

subsequent sections. Given below is a brief definition of these terms as

pertinent our example.

Substrates are compounds found in the external medium that can be

further metabolized by, or directly incorporated into, the cell. Some

examples of substrates are carbon, nitrogen, energy sources etc.

essential for cell function.

 34

A metabolic product is a compound produced by the cell that is secreted

into the extracellular environment. These could be compounds produced

in primary metabolism such as carbon dioxide, ethanol, acetate etc.

Biomass constituents are pools of macromolecules that make up biomass.

This group includes cellular constituents like macromolecular pools of

proteins, lipids, carbohydrates, etc. as well as macromolecular products

accumulating inside the cell.

Intracellular metabolite includes all other compounds within the cell. This

includes intermediates in different cellular pathways and building blocks

used for macromolecular synthesis [33].

We’ll illustrate some of the constraints explained above with the help of a

simple reaction system as shown in Figure 4.1 below.

The system consists of 6 metabolites namely A, B, C, D, G and F. These

metabolites are linked through 5 reactions. Each of these reactions

 35

constitutes a flux namely v1, v2, v3, v4, v5 and v6. The reversible reaction

between metabolites B and C has been decomposed into two equivalent

reactions with positive fluxes. System boundary indicated by dotted lines

demarcates the internal environment from the external environment.

Metabolite A enters the system with transport flux b1, metabolites G and

F (that can be considered as biomass precursors) exit the system with

fluxes b2 and b3 respectively. One of the reactions, that is conversion of

metabolite B to D is regulated by enzyme E. Thus, this reaction can only

occur only if enzyme E is present in the internal environment. The

presence of enzyme E in the internal environment is constrained on the

presence of substrate Eext in the external environment. However, the

product of this reaction D has a negative influence on the transcription

of the gene producing E thereby leading to the depletion of E.

Now, let us consider the constraints acting on this system. Mass balance

constraints require that the formation fluxes of a metabolite must be

balanced by the consumption fluxes for that metabolite. For example, in

the network above metabolite A is involved in 2 reactions: the transport

flux b1 that brings A into the internal environment and the reaction flux

v1 that converts it to metabolite B. Thus, imposing flux balance

constraint around metabolite A in the network above, we can write v1 - b1

= 0. Similarly, flux balance equations can be written around every other

metabolite in the system. Maximum uptake and secretion rates for

transport proteins can be determined experimentally [33]. These can be

used to constrain the maximum possible values for the transport fluxes

i.e. b1 ≤ b1_Max (similar constraints can be written for b2 and b3).

Enforcing thermodynamic constraints we get v1, v2, v3, v4, v5, v6, b1,

b2, b3 ≥ 0. Presence of A in the internal environment is constrained upon

the presence of substrate S in the external environment i.e. b1 > 0 iff

external environment contains (S). The regulated reaction between B and

D and the resultant feedback mechanism can be expressed as:

 36

- 1 B + 1 D : if (E)
regulation E : if (NOT D)

Abstract Metabolic Network (adapted from 8)

Now, consider an abstract metabolic network as shown in the figure

below:

Figure 4.2: Hypothetical metabolic network [redrawn from 8]

The network is an abstract representation of a typical metabolic network.

The network consists of 20 reactions, 7 of which are regulated by four

regulatory proteins. For modeling convenience we use mnemonic letters

such as A, B, C etc as abstractions of actual metabolites. We consider

only a few hypothetical reactions and metabolites in this scheme

 37

otherwise it would lead to an overwhelmingly large system, without

significantly adding to the usefulness of the model to justify the inclusion

of additional detail.

The external environment provides carbon sources in the form of

Carbon1 and Carbon2 through transport processes Tc1 and Tc2. Oxygen,

and metabolites F and H enter the network from the external

environment through transport processes TO2, Tf and Th respectively.

ATP is used as the energy currency and NADH serves as the charge

carrier. The network is composed of metabolites A, B, C, D, E, F, G, H

and O2 linked through 12 reactions. Some of these reactions are

regulated by regulatory proteins RPO2, RPc1, RPh and RPb. The

reactions and regulatory rules are listed in Table 1.

Reaction Name Regulation

Metabolic reactions

-1 A – 1 ATP + 1 B R1

-1 B + 2 ATP + 2 NADH + 1C R2a IF NOT (RPb)

-1 C – 2 ATP -2 NADH + 1 B R2b

-1 B + 1 F R3

-1 C + 1G R4

-1 G + 0.8 C + 2 NADH R5a IF NOT (RPO2)

- 1 G + 0.8 C + 2 NADH R5b IF RPO2

-1 C + 2 ATP + 3 D R6

-1 C – 4 NADH + 3 E R7 IF NOT (RPb)

-1 G – 1 ATP – 2 NADH + 1 H R8a IF NOT (RPh)

1 G + 1 ATP + 2 NADH – 1 H R8b

- 1 NADH – 1 O2 + 1 ATP Rres IF NOT (RPO2)

 38

Transport processes

- 1 Carbon1 + 1 A Tc1

- 1 Carbon2 + 1 A Tc2 IF NOT (RPc1)

- 1 Fext + 1 F Tf

- 1 D + 1 Dext Td

- 1 E + 1 Eext Te

- 1 Hext + 1 H Th

-1 Oxygen + 1 O2 To2

Regulatory proteins

 RPO2 IF NOT (Oxygen)

 RPc1 IF Carbon1

 RPh IF (vTh > 0)

 RPb IF (vR2b > 0)

Table 1 Reactions and regulatory constraints for the simplified metabolic network
[adapted from 8]

The metabolic reactions represent stoichiometric constraints on the

network. The concentration of carbon sources, oxygen and metabolites in

the external environment represents environmental constraints. Column

3 in Table 1 above represents the regulatory constraints imposed by the

enzymes RPO2, RPc1, RPh and RPb.

Maintenance and growth processes are approximated by the relation

Biomass – 1 C – 1 F – 1 H – 10 ATP. Since the reactions typically form an

underdetermined system we will maximize growth using this relation as

the objective function when determining the unknown flux values.

Maximizing the growth function is in accordance with the normally

behavior observed in microbial organisms [40].

 39

4.3 Metabolic Networks as Dynamic Constrained Objects

We will identify important and representative components from the above

network and explain their corresponding Cob representation. The idea is

illustrated with the help of following class diagram. This will be followed

by explanation of Cob code for significant portions of identified classes.

Figure 4.3 Class diagram for Cob representation of the metabolic network in fig 4.2

Let’s first consider an unregulated reaction from the network above and

identify the important Cob concepts applicable. For the sake of

illustration we consider reaction R1.

R1: -1 A – 1 ATP + 1 B

This reaction consumes one molecule of metabolite A and uses up one

energy molecule in the form of ATP to form one molecule of metabolite B.

 40

(We’ll use the term mole and molecule interchangeably during the course

of our explanation). These concentration values may be subject to further

change depending upon the other reactions they are involved in. Since

this represents a series formation for the concentration values of all

entities involved, we can represent the molecular concentration of

metabolites using a series variable. Thus, metabolites can be modeled

aptly as a dynamic Cob class as shown below:

dynamic class metabolite {
 attributes
 series real Moles[20];
 constraints
 forall I in 1..20 : Moles[I] >= 0;
 constructor metabolite(Conc,M) {
 ConcPool<1> = Conc;
 forall I in 1..20: Moles[I]<1> = M[I];
 }
}

The vector of 20 values represents the number of moles of a metabolite

formed or consumed per unit flux of the 12 internal reactions and 8

transport processes. These coefficients form an invariant property of the

network and can be obtained from the metabolic genotype of an

organism. The initial stoichiometric vector will be initialized when the

metabolite is constructed inside the internal environment. For example

the metabolite A can be initialized with the Cob syntax:

A = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,
 0,0]);

where the vector element represents the stoichiometric coefficients

associated with reactions R1, R2a, R2b, R3, R4, R5a, R5b, R6, R7, R8a,

R8b, Rres and transport processes Tc1, Tc2, Tf, Td, Te, Th and To2

respectively.

 41

The obvious constraints in the reaction R1 above are that the number of

moles of metabolite A and energy carrier ATP has to be greater than or

equal to 1. Thus, the result of this reaction and its direct execution

constraints can be represented using conditional constraints in the

equivalent Cob syntax:

A.Moles[1]` = A.Moles[1] – 1,
ATP.Moles[1]` = ATP.Moles[1] – 1,
B.Moles[1]` = B.Moles[1] + 1

 :- A.Moles[1] >=1, ATP.Moles[1] >=1;

The index 1 represents the fact the concentration changes are associated

with reaction 1.

However, as we can see from the network the only other reactions

producing A are transport processes Tc1 and Tc2. Furthermore, the

transport process Tc2 itself is regulated by the presence of enzyme RPc1

in the metabolic pathway. Thus, Tc1 and Tc2 impose indirect constraints

on the execution of this reaction. In order to consider the influence of

such interactions, we model the internal environment as a dynamic Cob

class, with the flux values generated by individual reactions represented

as series variables. Given below is the Cob representation of the

internalEnv class. It includes the metabolites A, B, C, D, E, F, G, H,

O2, ATP and NADH represented via the metabolite array Meta[]. The

reactions involving these metabolites are represented as constraints in

the class. This includes only the unregulated reactions in the internal

environment, as representing regulatory constraints requires knowledge

of the enzymes that are considered as part of the pathway. Furthermore,

some these enzymes depend on the presence of compounds in the

external environment; hence specification of these constraints is deferred

to the metabolicPathway class that aggregates both the internalEnv

and externalEnv classes.

 42

Given below is an extract from the internalEnv class highlighting the

significant components. For the complete code listing please see

Appendix A.

dynamic class internalEnv {
 attributes
 metabolite [11] Meta;
 series real [12] Flux;
 constraints
 Meta[1].Moles[1]` = Meta[1].Moles[1] – 1,
 Meta[10].Moles[1]` = Meta[10].Moles[1] – 1,
 Meta[2].Moles[1]` = Meta[2].Moles[1] + 1,
 :- Meta[1].Moles[1] >=1, Meta[10].Moles[1] >=1;
 .
 .
 .

 constructors internalEnv() {
 Meta[1] = new metabolite([-1,0,0,0,0,0,0,0,0,0,0,0,1,
 1,0,0,0,0,0]);
 Meta[2] = new metabolite([1,-1,1,-1,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0]);
 .
 .
 .
 }
}

The external environment provides Carbon sources in the form of

Carbon1 and Carbon2 through transport processes Tc1 and Tc2

respectively. Oxygen is made available through transport process To2,

thus, anaerobic growth can be simulated by restricting the external

Oxygen concentration to zero. Some of the intracellular metabolites like

H and F can be made by the cell internally or transported from

substrates Hext and Fext in the external environment through transport

process such as Th and Tf. Growth is represented by the biomass

equation -1C – 1F – 1H – 10ATP + 1Biomass. The objective of the

metabolic pathway is to maximize growth by optimizing this reaction.

 43

However, as we can see from the biomass reaction above, it depends on

the concentration levels of metabolites C, F, H and ATP that are present

in the internal environment. Therefore, it is appropriate to impose the

growth objective in the metabolic pathway that has knowledge of both

the internal and external environments.

class externalEnv {
 attributes
 substrate Carbon1, Carbon2, Oxygen,Fext,Ext,Dext,Hext;
 biomass Bio;
 constraints
 Carbon1.Moles >= 0;
 Carbon2.Moles >= 0;
 Oxygen.Moles >= 0;
 .
 .
 .
 constructors externalEnv(C1,C2,Oxy,Fe,He) {
 Carbon1 = new substrate(C1);
 Carbon2 = new substrate(C2);
 Oxygen = new substrate(Oxy);
 Fext = new metabolite(Fe);
 Eext = new metabolite(0);
 .
 .
 }
}

The last significant class we detail here is the metabolic pathway itself.

The regulatory and stoichiometric constraints will be enforced by this

class. The stoichiometric constraints impose conservation of mass and

thereby require that the consumption fluxes for a metabolite be balanced

by the corresponding production fluxes for that metabolite. Thus, for a

metabolite A with stoichiometric coefficients {-1,0,0,0,0,0,0,0,0,0,0,0,

1,1,0, 0,0,0,0} and the corresponding fluxes through the 12 internal

reactions represented by the flux vector Flux[] and those through the 8

transport processes represented by the flux vector TransportFlux[],

 44

we can write the following formulation in Cob to represent the

stoichiometric constraint.

(sum J in 1..12:(IntEnv.A.Moles[J] – IntEnv.A.Moles[J]’) *
 IntEnv.Flux[J]) +
(sum K in 1..8: (IntEnv.A.Moles[K] - IntEnv.A.Moles[K]’) *
 TransFlux[K])
= 0;

Thus, generalizing over all the metabolites in the internal environment,

we can write:

forall I in 1..11:
(sum J in 1..12:(IntEnv.Meta[I].Moles[J] –
 IntEnv.Meta[I].Moles[J]’) *
 IntEnv.Flux[J]) +
(sum K in 1..8: (IntEnv.Meta[I].Moles[K] -
 IntEnv.Meta[I].Moles[K]’) *
 TransFlux[K])
= 0;

Regulatory constraints

In order to explain the Cob representation of regulatory constraints lets

consider one of the regulated reactions for example reaction R2a:

R2a: -1 B + 2 ATP + 2 NADH + 1 C IF NOT (RPb)

In biological context this indicates transcriptional regulation to maintain

concentration of metabolite B. From a computational perspective it

indicates that the reaction R2a can take place only if the concentration of

enzyme RPb in the pathway is zero. The other execution constraint for

this reaction is that the molecular concentration of metabolite B has to

be ≥ 1. The side effects are production of 2 molecules of ATP and NADH

and 1 molecule of metabolite C. Thus, the Cob notation for the above

reaction using conditional constraints is given below:

 45

IntEnv.B.Moles[2]` = IntEnv.B.Moles[2] – 1,
IntEnv.C.Moles[2]` = IntEnv.C.Moles[2] + 1,
IntEnv.ATP.Moles[2]` = IntEnv.ATP.Moles[2] + 2,
IntEnv.NADH.Moles[2]` = IntEnv.NADH.Moles[2] + 2
 :- IntEnv.B.Moles[2] >= 1, RPb.Moles == 0;

The concentration of enzyme RPb is represented by the attribute Moles.

Optimization predicates

The system of reaction equations cited in Table1 and their corresponding

fluxes often form an underdetermined system [21,27]. That is the number

of fluxes often exceeds the number of metabolites. A particular solution

can be sought by optimizing on a linear objective function. Here, growth

is considered as the objective and we determine the corresponding flux

distribution that would maximize this objective. Growth is represented by

the relation:

- 1 C – 1 F – 1 H – 10 ATP + 1 Biomass

Thus, a biomass molecule is produced by consuming 1 molecule each of

metabolite C, F and H and 10 molecules of energy ATP. Cob provides

preference clauses to specify the optimization criteria. In presence of

preferences the resultant optimal state of the constrained object is

obtained by employing constraint satisfaction and optimization

techniques. Given below is an extract from the metabolicPathway class

where this optimization criterion is specified.

dynamic class metabolicPathway extends pathway {
 attributes
 internalEnv IntEnv;
 externalEnv ExtEnv;
 series real [8] TransFlux;
 enzyme RPO2,RPc1,RPh,RPb;
 constraints
 ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,

 46

 IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20] – 1,
 IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20] – 1,
 IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20] – 1,
 IntEnv.Meta[10].Moles[20]` = IntEnv.Meta[10].Moles[20]–10
 :- IntEnv.Meta[3].Moles[20] >= 1,

 IntEnv.Meta[6].Moles[20] >= 1,
 IntEnv.Meta[8].Moles[20] >= 1,

 IntEnv.Meta[10].Moles[20] >= 10;
 .
 .
 .

 preferences
 max (ExtEnv.Bio.Moles).
 constructors metabolicPathway(MC1,MC2,MOxy,MFext,MHext,
 MRPO2,MRPc1,MRPh,MRPb) {
 .
 .
 .
 }
}

The constraint highlighted above indicates the restriction that for

biomass to be generated the number of moles of metabolite C, F and H in

the internal environment have to be greater that 1 and that of ATP has to

be more than 10. The results of the reaction are also specified as part of

the constraint. The preference clause indicates that the concentration of

biomass molecules has to be maximized when more than one optimal

solution exists.

Code snippet listing the metabolicPathway class with the regulated

reactions, stoichiometric constraints and growth objective is shown

below. For the complete code listing please see Appendix A.

dynamic class metabolicPathway extends pathway {
 attributes
 internalEnv IntEnv;
 externalEnv ExtEnv;
 series real [7] TransFlux;
 enzyme RPO2,RPc1,RPh,RPb;

 47

 constraints
 RPO2.Moles = 0 :- ExtEnv.Oxygen.Moles > 0;
 RPc1.Moles = 1 :- ExtEnv.Carbon1.Moles > 0;
 RPc1.Moles = 0 :- ExtEnv.Carbon1.Moles = 0;
 RPh.Moles = 1 :- TransFlux[6] > 0;
 .
 .
 .

 forall I in 1..11:
 (sum J in 1..12:(IntEnv.Meta[I].Moles[J] –
 IntEnv.Meta[I].Moles[J]’) *
 IntEnv.Flux[J]) +
 (sum K in 1..8: (IntEnv.Meta[I].Moles[K] -
 IntEnv.Meta[I].Moles[K]’) *
 TransFlux[K])
 = 0;

 IntEnv.Meta[2].Moles[2]` = IntEnv.Meta[2].Moles[2] – 1,
 IntEnv.Meta[3].Moles[2]` = IntEnv.Meta[3].Moles[2] + 1,
 IntEnv.Meta[10].Moles[2]` = IntEnv.Meta[10].Moles[2]+ 2,
 IntEnv.Meta[11].Moles[2]` = IntEnv.Meta[11].Moles[2] + 2
 :- IntEnv.Meta[2].Moles[2] >= 1, RPb.Moles == 0;

 .
 . <other regulated reactions>
 .
 .

 ExtEnv.Carbon1.Moles` = ExtEnv.Carbon1.Moles – 1,
 IntEnv.Meta[1].Moles[13]` = IntEnv.Meta[1].Moles[13] + 1
 :- ExtEnv.Carbon1.Moles >= 1;

 .
 . <other transport reactions>
 .
 .

 ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,
 IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20]– 1,
 IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20]– 1,
 IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20]– 1,
 IntEnv.Meta[10].Moles[20]` =IntEnv.Meta[10].Moles[20]–10
 :- IntEnv.Meta[3].Moles[20] >= 1,
 IntEnv.Meta[6].Moles[20] >= 1,
 IntEnv.Meta[8].Moles[20] >= 1,

 48

 IntEnv.Meta[10].Moles[20] >= 10;

 preferences
 max (ExtEnv.Bio.Moles).
 constructors metabolicPathway(MC1,MC2,MOxy,MFext,MHext,
 MRPO2,MRPc1,MRPh,MRPb)
{
 RPO2.Moles = MRPO2;
 RPc1.Moles = MRPc1;
 RPh.Moles = MRPh;
 RPb.Moles = MRPb;

 forall I in 1..8: TransFlux[I] = 0;
 IntEnv = new InternalEnv();
 ExtEnv = new externalEnv(MC1,MC2,MOxy,MFext,MHext);
 }
}

Applications

Using the model above, we can determine the unknown fluxes through

reactions R1, R2a, R2b, R3, R4,R5a, R5b, R6, R7, R8a, R8b, Rres and

the transport processes Tc1, Tc2, Tf, Th, Te, Td, T02. During each run the

reaction rules are executed thereby causing a change in concentrations

of the substrates and metabolites. The resultant fluxes through these

reactions can be determined by optimizing on some criteria such as

minimize ATP production or maximize metabolite production or minimize

nutrient uptake or maximize biomass production etc. Depending on the

optimization criteria we choose when determining these fluxes, it would

enable us to find specific routes through the pathway that can be

optimized to achieve desired cell objective. By constraining the

concentration of metabolites we can understand how the cell would

respond to changes in the environment for example addition or deletion

of a substance, the effects of gene deletion and thus the cell behavior in

adverse environmental conditions. The flux values will also help us

understand the contribution of different components in attaining cell

objective for a given criteria. This would enable directed manipulation of

 49

gene content of an organism to obtain desired results. Some of these

applications bear significant importance in the field of drug discovery.

Advantages

A purely constraint based model provides a reaction based mathematical

perspective, and thus fails to capture the structural essence of biological

systems. In such models system parameters are invariably considered as

isolated variables related through some set of reactions that impose

constraints on their interaction. However, in reality these parameters

could be attributed to system (sub) components whose behavior can be

defined in terms of the constraints acting on these attributes. When

larger systems are assembled from these smaller objects, their attributes

are further constrained by the interactions they share with other

components in these systems. As can be seen from the Cob

representation of the metabolic network above, each entity is defined as

an independent object with a distinct set of attributes and constraints

that captures and defines the essential structural and behavioral

features of that entity. More complex structures can be built as an

aggregation of these smaller entities with well defined interface and

structural signatures. Besides, Cob offers some of the traditional

advantages of an object-oriented language such as aggregation/

inheritance hierarchies, encapsulation etc.

Glycolysis Pathway

Consider the glycolysis pathway as shown in the figure below. Glycolysis

is the sequence of reactions that metabolizes one molecule of glucose to

two molecules of pyruvate accompanied with the net production of two

molecules of ATP [2]. Similarities can de drawn with metabolic network in

figure 4.2 in terms of the network structure, reaction interconnections,

 50

regulatory constraints, etc. The level of detail is comparable to the

network we modeled using Cob environment. Thus, we believe the

approach we have presented here can be applied towards modeling more

complex biological networks.

Glycolysis Pathway (Source Wikipedia http://en.wikipedia.org/wiki/Glycolysis)

 51

Summary

In this chapter we analyzed a hypothetical metabolic network, explored

the biological constraints acting on it and detailed a dynamic Cob

representation for the same. We then looked at some of the advantages in

employing the Cob paradigm over traditional modeling methodologies

and discussed some of the applications of the model. In the next chapter

we present our conclusions from this study and some open issues for

future work in this area.

 52

Chapter 5

Conclusions and Future Work

In this thesis we have proposed and explored the constrained object

approach to systems biology. The motivation for this work stems from

the large amounts of molecular data being generated and the need to

integrate and understand this data from a systems perspective.

Biological systems exhibit emergent behavior that cannot be predicted

solely from an understanding of the behavior of the individual

components of these systems. The network of connectivity and

interrelatedness between these components is hard to comprehend using

purely analytical techniques. Different approaches have been explored

towards modeling biological systems. The need to model structural

characteristics was identified by some researchers as the first step in

understanding biological entities. However, the lack of information

required to build a detailed model of the cell using structural information

alone has been an impediment to this approach. Using constraint-based

approaches helps to overcome this lack of information by successive

identification and imposition of constraints on the behavioral solution

space. But a purely constraint-based approach tends to treat system

components as independent entities related mathematically through

some reactions. This fails to capture the structural characteristics

inherent of all biological systems.

The constrained object approach we proposed, in this thesis, offers a

unified approach to modeling biological systems, by facilitating a

compositional specification of the structure of the system through

objects, declarative specification of its behavior through constraints, and

visual development and manipulation of the underlying model. Since the

 53

traditional Cob model is limited at modeling dynamic behavior exhibited

biological networks, we explored the application of dynamic constrained

objects in modeling such networks. We also saw that Cob facilitates

objective exploration of different behaviors exhibited by these under-

determined networks through the application of preference predicates.

We illustrated these ideas by modeling an abstract metabolic network

using the Cob environment. Towards the end we presented the glycolysis

pathway as a detailed extension of the abstract network we modeled

using Cob.

Implementation issues

We found the current implementation of the constrained object paradigm

limited at integrating the several concepts we have proposed in this

thesis. However, we were able to simulate some of the proposed modeling

behaviors by employing isolated Cob constructs. For example, we were

able to simulate the behavior of underdetermined networks. The results,

as expected, were returned as internal SICStus variables. However, the

implementation was unable to support subsequent exploration of a

specific behavioral trait, using simultaneous application of optimization

through preference predicates. On the other hand, the preference

predicates, by themselves, were employed and computed by the

implementation when functioning within a system of isolated equations.

This problem of enforcing optimization in under-determined systems has

been a standard topic in linear algebra and has been studied extensively

elsewhere [45,46]. We also proposed the concept of enforcing optimization

in a dynamic environment. Under such conditions it remains debatable

whether future implementations of the system should employ

optimization using a local or global perspective. However, we believe the

appropriateness of the constrained object framework would encourage a

more robust implementation capable of supporting the kind of

 54

exhaustive modeling scenarios like the one we have explored in this

thesis.

Future Work

The model needs to be tested with metabolic networks of micro-

organisms. That would help us understand how well the model scales to

incorporate larger systems.

We would also like to link the model to online knowledgebase such as

EcoCyc, KEGG, etc., that provide information on the genes, enzymes and

pathways employed in the model. These resources provide species

specific information on metabolic pathway structures, references to

regulatory information etc.

We also need to incorporate feedback mechanism into the model to

facilitate incremental development. The model will be used as basis to

form hypothesis which should then be tested using in-vivo or in-vitro

methods. Any deviation in the experimental observation and the model

prediction should be used to refine the model.

We would also like to build state transition graphs using the model. This

would help us understand the action taken by the network at each stage

in satisfying the system objective.

We would also like to provide visual interfaces for building complex

systems using the Cob environment. This would facilitate observation

and interaction with the model through the interface. We also foresee the

development of pluggable components once sufficient information is

available from molecular databases about system components and their

behavior.

Finally, the Cob environment sometimes exhibits performance

degradation when handling large number of constraints and objects. This

is an area of concern that needs to be addressed as we scale up and

model more realistic biological systems.

 55

References

1) Aderem A. Systems Biology: Its practice and challenges Cell Vol.121

p. 511-513.

2) Berg J.M., Tymoczko J.L., Stryer L. Biochemistry Fifth Edition

Freeman Press 2002.

3) Bowden A.C., Cardenas M.L. Systems Biology may work when we

learn to understand the parts in terms of the whole Biochemical
Society Transactions Vol.33 p.516-519.

4) Bowden A., Hofmeyr J.S. The role of stoichiometric analysis in

studies of metabolism: An Example J.theor. Biol. Vol. 216 p 179-
191.

5) Covert M.W., Familli I., Palsson B.O. Identifying Constraints that

govern cell behavior: A key to converting conceptual to computational
models in biology? Biotech. and Bioeng. vol 84 p 763-772.

6) Covert M.W., Palsson B.O. Constraint-based models: Regulation of

Gene Expression Reduces the Steady-state solution space J.theor.
Biol. vol. 221 p 309-325.

7) Covert. M.W., Schilling C.H., Familli I., Edwards J.S., Goryanin I.I.,

Selkov E., Palsson B.O. Metabolic modeling of microbial strains in
silico Trends in Biotechnology Vol. 26. p179-186.

8) Covert M.W., Schilling C.H., Palsson B.O., Regulation of Gene

Expression in Flux Balance Models of Metabolism J.theor.Biol. 2001
vol. 213 73-88.

9) Csete M.E., Doyle J.C. Reverse Engineering of Biological Complexity

Science Vol.295 p. 1664-1669.

10) Edwards J.S., Palsson B.O. How will Bioinformatics influence

metabolic engineering? Biotech. & Bioeng. vol. 58 p 162-169.

11) Gombert A.K., Nielsen J. Mathematical modeling of metabolism

Curr. Op. in Biotech. Vol. 11 p 180-186.

12) Hartwell L. H., Hopfield J. J., Leibler S., Murray A. W. From

molecular to modular cell biology Nature Vol. 402 Supp. p. C47-
C52.

 56

13) Heinrich R., Schuster S. Modeling of metabolic systems: Structure,
control and optimality. BioSystems vol. 47 p 61-77.

14) Jacob F. Evolution and Tinkering Science v 196 p.1161-1166.

15) Kitano H. Computational Systems Biology Nature Vol. 420 p. 206-

210.

16) Kitano H. Foundations of Systems Biology MIT Press 2001.

17) Kohl P., Noble D., Winslow R.L., Hunter P.J. Computational

modeling of biological systems: tools and visions Phil. Trans. R. Soc.
Lond. Vol 358 p 579-610.

18) Loew L.M., Schaff J.C. The Virtual Cell: a software environment for

computational cell biology Trends in Biotechnology Vol.19 p. 401-
406.

19) Mahadevan R., Schilling C. H., The effects of alternate optimal

solutions in constraint based genome scale metabolic models
Metabolic Eng. 5 p. 264-276.

20) Palsson B.O., The challenges of in silico biology Nature Vol. 18 Nov

2000.

21) Palsson B.O. Systems Biology: Properties of Reconstructed Networks

Cambridge University Press 2006.

22) Price N.D., Papin J. A., Schilling C.H., Palsson B.O. Genome scale

microbial in silico models: the constraints-based approach Trends in
Biotechnology Vol. 21 p.162-169.

23) Raux R., Jayaraman B. Modeling Dynamic Systems with

Constrained Objects Technical Report 2004-05 University at
Buffalo.

24) Reed. J.L., Palsson B.O. Thirteen years of building constraint-based

in silico models of E. Coli Journal of Bacteriology p.2692-2699

25) Regev A., Shapiro E. Cells as computation Nature Vol.419 p.343.

26) Schaff J., Fink C.C., Slepchenko B., Carson J.H., Loew L.M. A

general computational framework for modeling cellular structure and
function Biophysics Journal Vol.73 p1135-1146.

 57

27) Schilling C.H., Edwards J.S., Palsson B.O. Toward Metabolic
Phenomics: Analysis of Genomic Data Using Flux Balances
Biotechnology 1999 p. 288-295.

28) Schilling C.H., Edwards J.S., Letscher D., Palsson B.O. Combining

Pathway Analysis with Flux Balance Analysis for the
Comprehensive Study of Metabolic Systems Biotechnol. and Bioeng.
v 71: p 286-306.

29) Schilling C.H., Letscher D., Palsson B.O. Theory for the Systemic

Definition of Metabolic Pathways and their use in Interpreting
Function from a Pathway-Oriented Prespective J.theor. Biol. Vol.
203 p 229-248.

30) Schilling C.H., Schuster S., Palsson B.O., Heinrich R. Metabolic

Pathway Analysis: Basic Concepts and Scientific Applications in the
post-genomic era Biotechnology prog. 1999 p. 296-303.

31) Seo H., Lee D.Y., Park S., Fan L.T., Shafie S., Bertok B., Friedler F.

Graph-theoretical identification of pathways for biochemical
reactions Biotechnology Letters 23 p. 1551-1557.

32) Stelling J., Klamt S., Bettenbrock K., Schuster S., Gilles E.D.

Metabolic network structure determines key aspects of functionality
and regulation Nature Vol. 420 p190-193.

33) Stephanopoulos G.N., Aristidou A.A., Nielsen J. Metabolic

Engineering: Principles and Methodologies Academic Press 1998.

34) Strothman R.C. The Coming Kuhnian Revolution in Biology Nat.

Biotechnology 1997 Vol.15, 194-199.

35) Tomita M. Whole cell simulation: a grand challenge of the 21st

century Trends in Biotechnology Vol.19 p.205-210.

36) Tomita M., Hashimoto K., Takahashi K., Shimizu T. S., Matsuzaki

Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J. C., Hutchison
C. A. E-Cell: Software environment for whole cell simulation
Bioinformatics Vol. 15 p. 72-84.

37) Tambay P., Constrained Objects for modeling Complex Systems PhD

Thesis October 2003, University at Buffalo.

38) Tambay P., Jayaraman B. The Cob Programmer’s Manual Technical

Report 2003-01 University at Buffalo.

 58

39) Varma A., Boesch B.W., Palsson B.O., Stoichiometric interpretation

of E. Coli glucose catabolism under various oxygenation rates. Appl.
And Environ. Microbiol 59:2465-2473

40) Varma A., Palsson B. O. Metabolic Flux Balancing: Basic Concepts,

Scientific and Practical Use Biotechnology Vol. 12 p. 994-998.

41) Varma A., Palsson B.O., Stiochiometric Flux Balance models

quantitatively predict growth and metabolic by-product secretion in
wild-type Escherichia coli W3110 Appl. And Environ. Microbiology
1994 60:p3724-3731

42) Varner J., Ramkrishna D. Mathematical models of metabolic

pathways Curr. Op. in Biotech. v 10 p.146-150.

43) Zhang Y., Case Studies in Constrained Objects M.S. Thesis June

2004, University at Buffalo.

44) Hodgkin, A. L. and Huxley, A. F., A quantitative description of ion

currents and its applications to conduction and excitation in nerve
membranes J. Physiol, 117:500-544.

45) Drori I., Donoho D. L., Solution of Minimization Problems by

Ars/Homotopy Methods Stanford University, Department of
Statistics.

46) Garcia C. B. and Zangwill W. I., Pathways to Solutions, Fixed Points

and Equilibria Englewood Cliffs, NJ: Prentice Hall, 1981.

 59

Appendix A

Cob Model for Metabolic Network shown in Fig. 4.2.

dynamic class metabolite {
 attributes
 series real Moles[20];
 constraints
 forall I in 1..20 : Moles[I] >= 0;
 constructor metabolite(Conc,M) {
 ConcPool<1> = Conc;
 forall I in 1..20: Moles[I]<1> = M[I];
 }
}

dynamic class substrate {
 attributes
 series real Moles;
 constraints
 Moles >= 0;
 constructor substrate(M) {
 Moles<1> = M;
 }
}

class biomass {
 attributes
 series real Moles;
 constraints
 Moles >= 0;
 constructor biomass(M) {
 Moles<1> = M;
 }
}

class externalEnv {
 attributes
 substrate Carbon1, Carbon2, Oxygen,Fext,Ext,Dext,Hext;
 biomass Bio;
 constraints
 Carbon1.Moles >= 0;
 Carbon2.Moles >= 0;
 Oxygen.Moles >= 0;
 Fext.Moles >= 0;

 60

 Eext.Moles >= 0;
 Dext.Moles >= 0;
 Hext.Moles >= 0;
 Bio.Moles >= 0;
 constructor externalEnv(C1,C2,Oxy,Fe,He) {
 Carbon1 = new substrate(C1);
 Carbon2 = new substrate(C2);
 Oxygen = new substrate(Oxy);
 Fext = new substrate(Fe);
 Hext = new substrate(He);
 Eext = new substrate(0);
 Dext = new substrate(0);
 Bio = new biomass(0);
 }
}

dynamic class internalEnv {
 attributes
 metabolite [11] Meta;
 series real [12] Flux;
 constraints
 Meta[1].Moles[1]` = Meta[1].Moles[1] – 1,
 Meta[10].Moles[1]` = Meta[10].Moles[1] – 1,
 Meta[2].Moles[1]` = Meta[2].Moles[1] + 1,
 :- Meta[1].Moles[1] >=1,
 Meta[10].Moles[1] >=1;

 Meta[3].Moles[3]` = Meta[3].Moles[3] – 1,
 Meta[10].Moles[3]` = Meta[10].Moles[3] – 2,
 Meta[11].Moles[3]` = Meta[11].Moles[3] – 2,
 Meta[2].Moles[3]` = Meta[2].Moles[3] + 1
 :- Meta[3].Moles[3] >= 1,

 Meta[10].Moles[3] >= 2,
 Meta[11].Moles[3] >= 2;

 Meta[2].Moles[4]` = Meta[2].Moles[4] – 1,
 Meta[6].Moles[4]` = Meta[6].Moles[4] + 1

 :- Meta[2].Moles[4] >= 1;

 Meta[3].Moles[5]` = Meta[3].Moles[5] – 1,
 Meta[7].Moles[5]` = Meta[7].Moles[5] + 1

 :- Meta[3].Moles[5] >= 1;

 Meta[4].Moles[8]` = Meta[4].Moles[8] + 3,
 Meta[10].Moles[8]` = Meta[10].Moles[8] + 2,
 Meta[3].Moles[8]` = Meta[3].Moles[8] - 1

 :- Meta[3].Moles[8] >= 1;

 61

 Meta[7].Moles[11]` = Meta[7].Moles[11] + 1,
 Meta[8].Moles[11]` = Meta[8].Moles[11] – 1,
 Meta[10].Moles[11]` = Meta[10].Moles[11] + 1,
 Meta[11].Moles[11]` = Meta[11].Moles[11] + 2

 :- Meta[8].Moles[11] >= 1;

 constructor internalEnv(X) {
 Meta[1] = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,
 0,0,0,0,0]);
 Meta[2] = new metabolite([1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0]);
 Meta[3] = new metabolite([0,1,0,0,0,0.8,0.8,0,1,0,0,0,0,
 0,0,0,0,0,0,0]);
 Meta[4] = new metabolite([0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,
 0,0,0,0]);
 Meta[5] = new metabolite([0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,
 0,0,0,0]);
 Meta[6] = new metabolite([0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,
 0,0,0,0]);
 Meta[7] = new metabolite([0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0]);
 Meta[8] = new metabolite([0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
 0,1,0,0]);
 Meta[9] = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,1,0]);
 Meta[10] = new metabolite([0,2,0,0,0,0,0,2,0,1,1,1,0,0,
 0,0,0,0,0,0]);
 Meta[11] = new metabolite([0,2,0,0,0,2,2,0,0,0,2,0,0,
 0,0,0,0,0,0,0]);
 }
}

dynamic class metabolicPathway {
 attributes
 internalEnv IntEnv;
 externalEnv ExtEnv;
 series real [8] TransFlux;
 enzyme RPO2,RPc1,RPh,RPb;
 constraints
 RPO2.Moles = 0 :- ExtEnv.Oxygen.Moles > 0;
 RPc1.Moles = 1 :- ExtEnv.Carbon1.Moles > 0;
 RPc1.Moles = 0 :- ExtEnv.Carbon1.Moles = 0;
 RPh.Moles = 1 :- TransFlux[6] > 0;
 RPh.Moles = 0 :- TransFlux[6] <= 0;
 RPb.Moles = 1 :- IntEnv.Flux[3] > 0;
 RPb.Moles = 0 :- IntEnv.Flux[3] <= 0;

 62

 for all I in 1..11
 (sum J in 1..12:
 (IntEnv.Meta[I].Moles[J] – IntEnv.Meta[I].Moles[J]’) *
 IntEnv.Flux[J]) +
 (sum K in 1..8:
 (IntEnv.Meta[I].Moles[K] - IntEnv.Meta[I].Moles[K]’) *
 TransFlux[K])
 = 0;

 IntEnv.Meta[2].Moles[2]` = IntEnv.Meta[2].Moles[2] – 1,
 IntEnv.Meta[3].Moles[2]` = IntEnv.Meta[3].Moles[2] + 1,
 IntEnv.Meta[10].Moles[2]` = IntEnv.Meta[10].Moles[2]+ 2,
 IntEnv.Meta[11].Moles[2]` = IntEnv.Meta[11].Moles[2] + 2
 :- IntEnv.Meta[2].Moles[2] >= 1,
 RPb.Moles = 0;

 IntEnv.Meta[7].Moles[6]` = IntEnv.Meta[7].Moles[6] – 1,
 IntEnv.Meta[3].Moles[6]` = IntEnv.Meta[3].Moles[6]+ 0.8,
 IntEnv.Meta[11].Moles[6]` = IntEnv.Meta[11].Moles[6] + 2
 :- IntEnv.Meta[7].Moles[6] >= 1,
 RPO2.Moles = 0;

 IntEnv.Meta[7].Moles[7]` = IntEnv.Meta[7].Moles[7] – 1,
 IntEnv.Meta[3].Moles[7]` = IntEnv.Meta[3].Moles[7]+ 0.8,
 IntEnv.Meta[11].Moles[7]` = IntEnv.Meta[11].Moles[7] + 2

 :- IntEnv.Meta[7].Moles[7] >= 1,
 RPO2.Moles > 0;

 IntEnv.Meta[3].Moles[9]` = IntEnv.Meta[3].Moles[9] – 1,
 IntEnv.Meta[11].Moles[9]` = IntEnv.Meta[11].Moles[9] – 4,
 IntEnv.Meta[5].Moles[9]` = IntEnv.Meta[5].Moles[9] + 3
 :- IntEnv.Meta[3].Moles[9] >= 1,
 IntEnv.Meta[11].Moles[9] >= 4,
 RPb.Moles = 0;

 IntEnv.Meta[7].Moles[10]`= IntEnv.Meta[7].Moles[10] – 1,
 IntEnv.Meta[10].Moles[10]`= IntEnv.Meta[10].Moles[10]– 1,
 IntEnv.Meta[11].Moles[10]`= IntEnv.Meta[11].Moles[10]– 2,
 IntEnv.Meta[8].Moles[10]`= IntEnv.Meta[8].Moles[10] + 1

 :- IntEnv.Meta[7].Moles[10] >= 1,
 IntEnv.Meta[10].Moles[10] >= 1,

 IntEnv.Meta[11].Moles[10] >= 2,
 RPh.Moles = 0;

 63

 IntEnv.Meta[11].Moles[12]`= IntEnv.Meta[11].Moles[12]– 1,
 IntEnv.Meta[9].Moles[12]` = IntEnv.Meta[9].Moles[12] – 1,
 IntEnv.Meta[10].Moles[12]` = IntEnv.Meta[10].Moles[12]+ 1

 :- IntEnv.Meta[9].Moles[12] >= 1,
 IntEnv.Meta[11].Moles[12] >= 1,

 RPO2.Moles = 0;

 ExtEnv.Carbon1.Moles` = ExtEnv.Carbon1.Moles – 1,
 IntEnv.Meta[1].Moles[13]` = IntEnv.Meta[1].Moles[13] + 1
 :- ExtEnv.Carbon1.Moles >= 1;

 ExtEnv.Carbon2.Moles` = ExtEnv.Carbon2.Moles – 1,
 IntEnv.Meta[1].Moles[14]` = IntEnv.Meta[1].Moles[14] + 1

 :- ExtEnv.Carbon2.Moles >= 1,
 RPc1.Moles = 0;

 ExtEnv.Fext.Moles` = ExtEnv.Fext.Moles – 1,
 IntEnv.Meta[6].Moles[15]` = IntEnv.Meta[6].Moles[15] + 1

 :- ExtEnv.Fext.Moles >= 1;

 ExtEnv.Dext.Moles` = ExtEnv.Dext.Moles + 1,
 IntEnv.Meta[4].Moles[16]` = IntEnv.Meta[4].Moles[16] - 1

 :- IntEnv.Meta[4].Moles[16] >= 1;

 ExtEnv.Eext.Moles` = ExtEnv.Eext.Moles + 1,
 IntEnv.Meta[5].Moles[17]` = IntEnv.Meta[5].Moles[17] - 1

 :- IntEnv.Meta[5].Moles[17] >= 1;

 ExtEnv.Hext.Moles` = ExtEnv.Hext.Moles - 1,
 IntEnv.Meta[8].Moles[18]` = IntEnv.Meta[8].Moles[18] + 1

 :- IntEnv.Meta[8].Moles[18] >= 1;

 ExtEnv.Oxygen.Moles` = ExtEnv.Oxygen.Moles - 1,
 IntEnv.Meta[9].Moles[19]` = IntEnv.Meta[9].Moles[19] + 1

 :- ExtEnv.Oxygen.Moles >= 1;

 ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,
 IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20]– 1,
 IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20]– 1,
 IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20]– 1,
 IntEnv.Meta[10].Moles[20]`=IntEnv.Meta[10].Moles[20]– 10

:- IntEnv.Meta[3].Moles[20] >= 1,
 IntEnv.Meta[6].Moles[20] >= 1,

 IntEnv.Meta[8].Moles[20] >= 1,
 IntEnv.Meta[10].Moles[20] >= 10;

 preferences

 64

 maximize (ExtEnv.Bio.Moles);

constructor metabolicPathway(MC1,MC2,MOxy,MFext, MHext,
 MRPO2,MRPc1,MRPh,MRPb)
 {
 RPO2 = new enzyme(MRPO2);
 RPc1 = new enzyme(MRPc1);
 RPh = new enzyme(MRPh);
 RPb = new enzyme(MRPb);

 forall I in 1..8: TransFlux[I] = 0;
 IntEnv = new InternalEnv();
 ExtEnv = new externalEnv(MC1,MC2,MOxy,MFext,MHext);
 }
}

 65

	Chapter 1
	1.1 Motivation and Significance
	1.2 Constrained Object approach to Systems Biology

	Chapter 2
	Systems Biology
	2.2 Towards a Constrained Object Approach
	Biological constraints

	Chapter 3
	Constrained Objects
	3.1 Overview of Cob Language
	Example (DC Circuit)

	3.2 Dynamic Constrained Objects
	Syntax and Usage [adapted from 23]
	Example (AC Circuit)

	Example (Nerve Cell Behavior Model)
	3.3 Preference Predicates in Cob

	Modeling Metabolic Networks
	4.1 Metabolic Networks
	4.2 Example
	Abstract Metabolic Network (adapted from 8)

	4.3 Metabolic Networks as Dynamic Constrained Objects
	Glycolysis Pathway

	Conclusions and Future Work
	References

