Previous: Reducing six dimensions to three
  Up: Modeling Neurophysiological Data
  Next: Normalization of the basis functions
 
The usual way to compute the response of a sensor to a certain stimulus of
known spectral composition is by means of equations like 
(p. 
) from Section 
:
 
where  is the response of the sensor, 
 is the power
spectrum of the stimulus, 
 is the sensor spectral
sensitivity, and 
 is wavelength. Since this depends crucially on
the linearity of 
, we cannot apply this equation to
the basis functions we derived in Section 
(p. 
) because they are essentially non-linear. The
solution I have adopted for this problem is what I will call the 
sigmoid-of-linear (SL) model. This model rests on the hypothesis that the
basis functions of Section 
 can be modeled as the
composition of a linear function and a sigmoid function:
 
where  is the linear function, 
 is the usual sigmoid function, and
 is the spectral sensitivity of 
. I believe this is a
reasonable hypothesis, since saturation (which is modeled by the sigmoid
function) is a function of the biochemical machinery of cells, and is
determined by total absorbed energy (total ``quantum catch'') rather than
by the spectral composition of the stimulus. In Section 
(p. 
), I treated each constant-wavelength data set as
independent from the others, and hence applied the sigmoid model at this
level, but in the SL model I separate the wavelength dependent component of
the response from the radiance dependent component. For 
, we can use the
activation functions from Section 
(p. 
) at relative radiance 1.
 That gives us the following equations for the SL basis functions:
 
where , 
, 
 are the SL basis functions derived
from the previous set 
, 
, and 
; 
 is relative radiance in
; 
 is wavelength; and 
 and 
, etc., are the
sigmoid parameters for 
, etc. The sign function is as defined
before, returning --1, 0, or 1, depending on the sign of its argument. If
 were linear in 
, then 
, and likewise for the other two. The function 
 is a
straightforward relative of the usual sigmoid function, meant to deal with
both positive and negative values, and subtracting the zero-offset (the
value of the function at 
) of the sigmoid with the given
parameters. The latter is a technicality introduced to prevent
discontinuities around the zero-crossings of opponent functions.
All that is left to do now is to determine values for the constants
, 
, 
, 
, 
, 
. To do this, I
fitted the SL functions 
, 
, and 
 to their
non-linear counterparts 
, 
, and 
, minimizing the mean square
error of fit as a function of 
 and 
, over a regular grid of 441
points (21 coordinates in the radiance and 21 in the wavelength domain),
using the steepest gradient descent algorithm of Mathematica's FindMinimum
function.  The results are shown in Table 
 and
Figures 
 to 
.
With an RMS error of fit of 2-5% over the data set, the model fits rather well. Some of the error is no doubt attributable to the higher intensity ranges of the functions (as evident from the plots of the difference functions), which is the most extrapolated in the original non-linear functions, relative to the data sets they themselves were based on. I will therefore use the SL functions as the basis functions for the NPP color space, because they allow us to continue our exploration of the color-space properties in an analytical way.